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FOREWORD

Th!s technical report was prepared by Dr. Clifforl. D. Fawcett

of the Deputy for Development Planning, Aeronautical Systems Division,

Wright-Patterscn Air Force Bane, hio, arm vas presented to the Depart-

ment of Industrial Engineering of the Ohio State University in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

This work was directly motivated by experience obtained while

employed as a member of the technical statf at Wright-Patterson Air

Force Base. In performing effectiveness analyses of various Air Force

weapon systems, it has become increasingly apparent that the tactics
used in employing the system can be of overriding importance in de-

termining system effectiveness. It is also clear that uncertainty

is an unavoidable and crucial factor in decisions relating to future

military systems. It is relatively easy to point out and discuss

these facts and few rational people will dispute their importance,

but It seems to be rare for a system evaluation to include explicit

cansideration of tactics optimiadion and uncertainty. This is un-

doubtedly due to the conceptual and mathematical difficulties that are

encountered in so doing, coupled with the practical considerations of

limited resources and time available for most weapon system evalun-

tions. With this situation in mind, the work that is described here-

in was undertaken as a more extensive consideration of these problem

than is usually possible.
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Publication of this technical documentary report does not con-

stitute Air Force approval of the report's findings or conclusions.

It Is published only for the exchange and stimulation of ideas.
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ABSTRACT

This work applies dynamic progrlming and some notions from

decision theory. Basic recursive relations or* developed for detorminft

istic and Markovian decision processes. Sufficien~t condition@ are

stated that assure the optimality of results that these relationships

produce. The application deals with the problem of making a rational

selection of tactics for air-to-ground attack when faced by uncertainty

as to the exact conditions that prevail.

A single aircraft attack on a target is referred to as a "duel."

A duel is treated as a multistage decision process with successive

aircraft passes at the target corresponding to stages in the decision

process. The basic factors to be considered at each stage of the duel

are the weapon effectiveness as a function of the number of weapons

delivered, the aircraft's ability to survive, and the aircraft's

ability to acquire the target end deliver weapons. We seek to deter-

mine an optimal policy that indicates the number of weapons to be

delivered and the mode of attack to be used at each peas depending on

what state of affairs develops as the duel progresses.

iv
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The selected policy maximizes the aircraft's return subject to

constraints on the number of passes that can be made, the number of

weapons available to the aircraft, and the probability of the aircraft

surviving the duel. Several different types of return to the attacker

are considered. These include the expected value of the number of hitt

achieved, the probability of at least one hit, and the expected utility

of the duel to the attacker where the utility is an arbitrary function

of the number of hits achieved. I
A principle result from the duel models is an indication of the

maximum return as a function of the constraining probability of the

aircraft not surviving the duel. This is referred to as a "return-

versus-attrition function" for the duel. Multiple aircraft raid models

are developed to determine which point on the return-versus-attrition

function is the best operating point for attacking the target. These

raid models assume that the aircraft In the raid make stochastically

independent, statistically idertical attacks. By using the return-

versus-attrition function from a single aircra.tt duel model, and con-

sidering the probabilistic survival of area defenses, the optimum raid

size and the best policy for the duel are determined. This determine-

tion minimizes the expected value of the number of aircraft lost in

achieving a required level of return to the attackers. -.

A multiple aircraft raid on multiple targets is considered by

starting from the previously stated basic assumption. Here, the problem

is to allocate a given number of aircraft among targets aend specify the

policy for each duel to maximize the total utility to the attackers

subject to constraints on the number of aircraft available, the expected

V.f



value of the number of aircraft lost, the number of passes an aircraft

can make against each target, and the number of weapons an aircraft can

carry to each target.

The question of what tactic to choose In the face of uncertainty

as to the true parameter values is approached by associating a range

of uncertainty with each of the Input psrameters. We assume complete

Ignorance of the value that the parameters might take within their

respective ranges of uncertainty. A systematic method is developed

that aids the decision maker in choosing a nominal set of Input values

such that the solution that is optimum for those nominal input values

constitutes a rational tactic selection considering that the realited

or actual input values might fall anywhere within their ranges of

uncertainty.
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GLOSSARY OF SYMBOLS

A - Used to symbolize that target acquisition has occurred.

A* - Used to symbolize that target acquisition has not occurred.

Ao  - The event that target acquisition occurs on an initial

pass.

A0 - The comnlement of A 0 .

AoD - The event that acquisition and delivery occur on an
initial pass.

AoD* - The event that acquisition occurs and weapon delivery
does not occur on an initial pass.

A1  - The event that target acquisition occurs on a subsequent
pass.

AI  - The complement of A,.

AD - The event that acquisition and delivery occur on a
subsequent pass.

A D The event that acquisition occurs and weapon delivery

does not occur on a subsequent pass.

C.- A control variable assuciated with W.

a - A control variable associated with wj.

a - The control variable associated with W'.

C -Aspiration level in a PC duel;
Saturation level in an ED duel.

CR - Expected hits required per raid.

CR(a;a ° ) - Expected hits per raid versus a when using the tactic
that is based on the input values associated with a.'.

CRt(mt) - Expected hits per raid on target t under attack policy mt.

Dn  - Decision vector at stage n.

- The lecis'on vector (Rt, mt).

XV--.
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dn - A component of Dn; number of weapons allocated to pass n.

dn - B3est salvo size at pass n.

4 s - Increment of variation for s.

ER(m) - Expected losses per raid when the mth attack policy is
used.

ERr - Constraint on the expected losses in attacking
targets l,---,t.

ERT - An arbitrary lmiting value associated with the set SE -

F(CL;a) - A measure of system performance versus aL when using the

tactic that is based on the input values associated
with W'.

fn(Xn) - Maximum n stage return as a function of xN .

fn(X) - Maximum expected value of the n stage return as a
function of I and X .

ft(Xt) - Maximum utility achievable in attacks on targets l,---,t
as a function nf X t .

gnLXnDn,fn-I(Yn-1)] - n stage return function.

gnij[qnfn-Ij(c,l) - n stage return fanction associated with
transition from state I to state J.

h(j;dn) - Probability function of number of hits for a salvo of
size dn.

- Maximum value of i.

- Markov state index; I - 1,---,T.

- The number of comgponents of W.

KD(m) - Probability of achieving at least one hit per duel when

the mth attack policy is used.

KDt(mt) - Probability of at least one hit per duel with target t

under attack policy mt.

KR - Required probability of getting at least one hit per raid.

KR(cL;c) - Probability of at least one hit per raid versus a. when
uslng the tactic that is based on the input values
associated with a'.

X1



K.t.Ai) ( Probability of at least one hit per raid on target t
t under attack policy mt.

I kn  - A conponent of D.; mode of attack index at pass n.

kn - Best mode of attack at pass n.

LR - Expected losses per raid when the optimum attack
policy (m*) is used.

LR(a;(') - Expected losses per raid versus cL when using the tactic
that is based on the input values associated with c f .

F

Lr - Expected losses in killing a target with repeated raids
when the optimum attack policy is used.

t
| t - The relative importance of target t.

m * - Optimal attack policy for target t.

In - Stage index; n - 1,---,N.

Pij(Dn) - Markov state transition probability.

rrn(i;G) - The probability function of I with parameter 0.

Oni(xn,sn) - The actual probability of surviving passes n,---,l
versus i, x., and Sn .

- a parameter of the example salvo effectiveness function

(see equation (111-16)).

R - Number of aircraft per raid.

R* - Best raid size ( * R(m*)).

R(m) - Raid size required to realize CR or KR as appropriate

when the ruth attack policy is used.

Rt - Raid size for target t.

R* - Optimal raid size for target t.

Rt - Constraint on the total aircraft allocated to
attacking targets l,---,t.

rH(dn ) - Expected hits per salvo of size dn .

rK(dn) - Probability of at least one hit in a salvo of size dn.

rn(Xn,Dn) - Stage n return versus Xn and Dn .  .

-- 2



t

SA  - Probability of the aircraft surviving the area defenses
one way, either from base to target or from target tc 4ase.

SAt - Probability of the aircraft surviving area defenses
enroute to or returning from ta.get t.

SD(m) - The actual probability of the aircraft surviving the
duel when the mth attack policy Is used.

S~ nX n ) - A set depending on Kn where Dn E SD (Xn).
Dn n

SIt(mt) - Actual probability of the aircraft surviving a duel with
target t under attack policy mt.

- A set where E Es-
ERt Rt ERt

SMt(ERtRt) - A set where mt Sm t(ERtRt).

SR(Rt) = A set where Rt( SR(R).

S.- - A set where R s
Rt Rt

S - Probability of aircraft survival to the point of weapon
release on a mss.

S u  Conditional probability that the aircraft survives a pass

given that it survives to the point of weapon release.

S Xn - An arbitrary set where Xne SXn.

Ssn(x n ) - A set depending on xn where SnC Sn(xn).

- An arbitrary limiting value associated with S. .

sn  - Constraining probabilitv of the aircraft surviving

passes n,--- ,1.

t- Index on target when multiple targets are considired.

t -

n(XnDn) - State vector transformation.

0 - A parameter of the example salvo effectiveness function
(see equation (111-18)).

xviiI
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U(i) - Utility level or danage level associated with

Markov state i.

UT - Utility of all raids on the target complex.

Ut(Z) - Utility of Z expected hits an target t.

tpLP] - Utilltv associated with probability p of killing target t.

ul)(m) - Expected hits per duel when the mth attack policy is used.

uDt(mt) - Expected hits per duel with target t under attack
policy Mt .

w- Vector of inputs to a raid model.

Wt - A vector of input values.

Wo  - Vector of optimistic input values.

Wp - Vector of pessimistlc input values.

wj - The jth component of W.

Woj - The jth component of WO .

Wpj - The jth component of Wpo

Xn  - State vector at stage n.

- Residual state vector,
n

* t  - The state vector R "

xN - An arbktrarv imiiting value associated with S

-n  - A component of Xn and XA; number of weapons available for
passes n,---, I.
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Central Statemen:

This work deails irith the pro).-N? of mtking A it-tiOai selOctioU!

of tactlzA for Air-to-grouiW att ack whan facad by micerzainty as to the

exact cowiltions that prevail. The intntion Is to provide a syste-

=&tic sothod for muking the best vst * f avallrcble Wnor'mattn. The

result is not an "utomatic tactics salect'n" Al ut rather it is a

quantitatve theoretical structure that caut serve as a fraw~vork within

which to evaluate the multitude cf tangble Pnd Intangible feictors that

must ba consi.dered in planning an air strike.

"er inolo&X and Gem.ral Concept jI
To begin the discussion we will establsh some terminology and

a gfmeral concept. A "raid" will denote a multirle aircraft attack

against a target. The raid is composed of "sorties," where each sortie

lrvolvs one aircraft which takes orr, proceeds to the target, takes

part in the ottac on the target, returns to its base, and lands.

When an individual aircraft reaches the target area, Its encomter with

,1

I
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the target and target defenses will be referred to as a "duel." A

duel may involve multiple passes by the aircraft. A duel might be fur-

thor described as follows.

A military aircraft with a given number of bombs on board is to

etra* a defended target. A maximum of N passes can be made subject to

tuel lim.1tation or arbitrary policy. A given pass may include acquir-

ing the rArge , surviving to the point of weapon releas., releasing

weapons. &rd 3urviving the pullout. Some important considerations are

as fullows.

Whert the aircraft makes a pass, target acquisition is thought of

as an. evenr tier has occurred when the pilot has sufficient information

to allow ".e-pJmis to be delivered. This could imply that he visually

sees the target or a designated aim point. It could also imply that

s-e sens.r such as a radar has produced a desired response. Once tar-

get acquisition has occurred, the aircraft Is maneuvered into position

&rAd aligned for weapon delivery. Because of constraints on the aircraft

maneuver ca.abIlltles and limitations on pilot reaction time, it is

possible for target acquisition to occur too late to allow for a weapon

dfilivery on the same pass.

1Tha word "duel" when used in this work has a slightly modified
meaning frow the more conventional use of the word. In a classical
duel, as duscribed, for example, by Williams and Ancker (26) the two
duelists fire at each other until one is killed. In the duels
describ-ad herein, an aircraft attacks a gromd target while the target
defenses fire at the aircraft. All of our duels end if the aircraft is
killed. Some of our duels end if the aircraft achieves a specified
objective and others of our duels proceed independent of the success
of" the aircraft's attack on the target.
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We will refer to the following two types of passes. An

"initial" pass is made when target acquisition has not occurred during

any previous pass of the same duel. A "subsequent" pass is made when

target acquisition has occurred on at least one previous pass of the

same duel. We distinguish between an initial pass and a subsequent

pass because target acquisition may be less difficult if it has

occurred on a previous pass of the same duel.

The probability that acquisition occurs on an initial pass will

be symbolized P(Ao ) and the probability that target acquisition occurs

on a subsequent pass will be symbolized P(A1 ). The symbols P(AOD) and

P(AI3) will denote the probability that acquisition and delivery occurs

on an initial and subsequent pass, respectively.
2

The notion of aircraft survival and its relation to the capa-

bility of the aircraft to attack the target is complicated by the

variability in possible damage to the aircraft. "Damage" may result

in anything from immediate disintegration of the aircraft to a slight

degradation of performance or even to no effect on the aircraft capa-

bility. We will make an abstraction of the survival aspect of the

problem by defining the probability ST as the probability of surviving

to the point of weapon release. We assume if the aircraft survives,

its performance is completely unaffected and if it does not survive,

ther, the aircraft does not participate further in the attack end will

be considered as a loss. Also, we define Su as the conditional probe-

bility of the a!craft surviving the pass given that it survives to

the point of weapon release.

2 If B denotes an event, the notation P(B) will denote the
probability of occurrence of the event B.

iI
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The third principal aspect of a pass concerns weapon effective-

ness. The group of bombs delivered on a given pass will be referred

to as a "salvo." We can visualise the individual Impact points of

bombs in a salvo as clustering around the effective aim point for that

salvo.3 The location of the effective aim point varies with respect to

the target according to some probability distribution. The function

r(d) vill represent the effectiveness of a salvo as a function of salvo

size, d. It is not the purpose of this work to derive the function

r(d), but it is Important to note that r(d) is in general a monotoni-

cally nondecreasing, concave function of d. In other words, larger

salvos have greater effectiveness but there is a diminishing marginal

return as salvo sise increases.

The term tactics when used in this report includes the following.

The operational planner must specify the number of aircraft per raid

or "raid size." A policy must be established as to the maximum number

of passes per duel and the allocation of weapon load among those passes.

A policy must also be established to tell vhe pilot how to make each

pass, i.e., high level, low level, dive, etc. All these items must be

specified in a rational way in the face of uncertainty as to the exact

conditions that prevail.

3The variation of individual Impact points from the aim point
may be unintentional as would be caused by factors such as ballistic dis-persion. The variation of individual impact points from the aim point

may also be intentional as would be caused by introduction of a syste-
matic delay in the time of release for the various weapons. This latter
is generally referred to as "stick bombing," however, we will refer to
any group of bombs released on a pass as a salvo.

I
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A rational selection of tactics must involve a criterion or

objective, The spectifc objective crn vary from one problem to another.

The basic approach adopted in this report Is to plan the raid so as to

Uminimize the losses sustained In achieving a given level of effective-

ness. A number of measures of effectiveness are considered. For some

targets, the level of damage is proportional to the number of hits i
achieved. This might be true of a large area target. Another con

class of targets consists of those such as a revetted artillery site

for which a direct hit villI deactivate the site and any miss viIl prob-

ably leave the site unharmed. For these targets, the level of effec-

tiveness is in terms of the probability of at least one hit. We can

i conceive af another class of tarjets which In itself seems to be of

largely theoretical Ir .erest but is worth including because It makes a

convenient introduction to the most general case. For these targets

achieving C hits is adequate; there is no additional value In achieving

more than C hits, and achieving less than C hits is of no value. All

of the preceding measures of effectiveness are special cases of the

I general case where the level of damage depends on the number of hii "

achieved according to some arbitrary utility function. The implica-

-tons of these various measures of effectiveness are discussed in later
ch,-oters.

Motivation

User Oriented

The motivation for this work cames from two sources. The most

- obvious is the user of tactical air-to-grourd weapons systems. As a

highly technological nation, we tend to invent new hardvare items to
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meet military problems. It seems clear that research should also be

devoted to learning how to more effectively use existing equipment.

This is one of the goals of this research.

valuating System Designs

A second and perhaps more activation for this work comes

from the need to perform comparative 4valuation of new weapon system

designs. This is the aspect from which the weapon system designer

views the problem. In evaluating competing new designs or modifications

to existing systems, many factors must be c..nsidered. These includc

cost, operational effectiveness, maintenance implications, logistics

implications, training implications, and delivery schedule. This re-

port deals with operationai effectiveness.

A Two Staxe Decision Problem

One way to compare the operational effectiveness of alternative

system designs is to formulate a two stage decision problem. At the

first stage is the aggregation of decisions that determine the charac-

teristics of the weapon system. These decisions will be referred tv

as design decisions. They are thought of as being made by a largely

fictitious individual to be referred to as the "designer." At the

second stage, we consider the operational use of the system that is the

product of the first stage. The second stage decisions are made by

the "user."

The designer's decision problem at the first stage can usefully

be abstracted in the terminology of Luce and Raiffa (19) as an indi-

vidual decision under uncertainty. The states of nature, 9j, where

V I.

L.
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j is an integer such that I < j < J, are Identified as an exhaustive

and mutually exclusive set of situations that represent the prospective -

usage of the system. Various designs ai where 1 < I < I constitute the

alternatives under consideration. A utility uis associated with the

emplry;-,,nt of design alternative I in situation J.

If a subjectivi probability distribution pj where 1 < J _ J can

be defined over the rj, then the most desirable design alternative can

be chosen by maximizing the expected utility or by some other means

based on probabilities, i.e., by making a decision wider risk. If the

designer is completely ignorant of the probabilities pj, or chooses to

ignore any such information that he may have, then the design decision

is made as a decision under uncertainty. Some principle, such as

maximin utility, minimax regret, the principle of insufficient reason

or the pessimism-optimism index, might be applied. Whether or not the

subjective probability distribution can be defined, a key element of

the designer's decision is the set of utilities, u j.

To determine the Ulj values for the first stage decision, the

second stage decision, i.e., the user's decision, must be considered.

The utility of a given system design in a particular situation depends

on the design of the system, the objectives toward which use of the

system is directed, the nature of the situation, and the manner in

which the system is used. The user's decision problem is visualised

as a constrained optimization in which tactics are selected to maxi-

* mize the utility (uij) within the constraints imposed by the system

* design (ai) and the situation (0j). As an examp!e, the user might

wish to maximize the probability of kill. The type of aircraft and
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mode of usage dictate the fuel capacity and rate of fuel consumption.

The situation controls the base to target distance. These factors

combine to provide a constraint on the number of passes that can be

made. Thus, the user must maximize the probability of kill subject to

a constraint on the number of passes.

The Implications of Tactics Selection

The operational effectiveness of a weapon system in a particular
situation can be greatly influenced by the choice of tactics. It is

therefore important when evaluating a weapon system to use the tactics

that are best for that particular design and situation. For example,

consider a night attack. Suppose tvo design alternatives are being

compared and that they are identical with the following exceptions.

Suppose design A provides an additional special sensor that has a highly

accurate target locating capability but has a short range. Suppose the

alternate design B simply provides on. additional bomb and relies en-

tirely on the aircraft's radar for target acquisition. Much current

practice is to make only one pass at the taret per sortie. If the

comparison were made on this basis, the spectal sensor of design A may

be useless because its short range means ti-, the information it pro-

vides comes too late to be useful. Thus, silace design B provides an

extra bomb and the designs are the same othervise, design B will look

better. If, on the other hand, each design is used with its own best

tactics, the tactic for design A might be to use the special sensor to

locate the target on the first pass and then deliver weapons on the

second pass. Design B might still call for just one pass. On this
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basis, design A may or my not look better than design B but the com-

parison certainly seems more reasonable.

The principle that each design alternative should be evaluated

using its mm best tactic is not new. The difficulty is determining

what are the best tactics. Determining the beat tactic for a given

system design In a particular situation can be a major constrained

optimization problem. The objective function and the constraints must

be carefully formulated and a solution mst be found.

Sevaluatn a system design, it I sometimes tempting to by-

pass the tactics optimisation problem by having a "panel of experts"

choose the tactics appropriate for each situation in which the system

is to be evaluated. It might then be argued that if all designs are

evaluated using the sam tactic in a given situation, the comparison

is "fair." This is simply not true as was qualitatively indicated in

the example. It might also be argued that the panel of experts can I
assign each system its own best tactics. This approach has a number of

limitations. The designs being evaluated are generally different from

existing equipment and the situations of interest are usually beyond I

the experience of any panel of exprts. Further, even when applicable I
experience is available, existing practice Is not necessarily optimal.

Finally, the limitations of people in Judging the implications of

complex quantitative relationships are well known.

The tactics optimization problem seem to be inseparable from

the design evaluation problem whenever the user has some latitude of

choice as to the manner of system employment. In a sense, we might

view the role of the designer as that of establishing constraints
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within which the user must operate. Thus, selecting a beat system

design is in effect a problem of deciding which set of alternative

modes of use should be provided to the user. The cost of the system

generally increases as the variety of modes of use available to the

user is increased.

The Implications of User Uncertainty

Whether we are considering the user's problem or the design

evaluation problem which contains the user's problem, a considerable

complication is introduced by the user's uncertainty. The prospective

usage of the system is characterized by an array of situations. De-

termining the utility of a given system design in a particular situa-

tion can be treated as a conceptually simple constrained optimization

problem if the situation is exactly defined. Unfortunately, the situa-

tion is not exactly defined in actual practice. Such quantities as

the probability of aircraft survival during a phase of the sortie are

generally matters of considerable uncertainty. Thus, the specification

of a situation must generally reflect the degree of uncertailnty in-

volved when values are given for the characterizing parameters.

From the standpoint of the urer, a systematic method should be

available for considering the implications of uncertainty and his

options to control the outcome by appropriate tactics selection. From

the standpoint of the designer, it is important to understand the im-

plications of user uncertainty because it affects the utlilty of a

system design in a particular situation. A general principle might be

that there is no point in providing the user with options that he can't

use effectively because he is uncertain of the situation.
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Research nh 1losoghY

A Concept of, Operations Research

One view is that operations research is basically a conjec ural

discipline which involves investigating the consequences of asaum ttons.

Accordingly, three aspects of this discipline might be identified

First Is the specification of assumptions, second is the develops it

and employment of Investigative techniques, and third is the appl -

tion of theoretical results in making judgmnts about practical r% A

world problems. All or some combination of these aspects may be

propriate to a given study,

Assumptions are invariably Involved in any operations resei

investigation. These assumptions should be such that knowledge of

their consequences has some value. If they lead to a theoretical

structure that parallels some real world situation, then perhaps I -

ferences can be drawn about relationships and the consequences of -ts

in the real world by studying the corresponding relationships in t

theoretical structure. The notion is that studying the theoretica

structure Is more convenient and cheaper than studying the corresp, 4-

ing real world situaIion. This is particularly true of military

problems.

The investigative techniques used in a study can range from

operational experiments to mathematical analysis. We might think c

an operational experiment as an attempt to establish a relationshiF

between the theoretical structure and the real world, i.e., hypothe -s

or results deduced therefrom are tested. At the other extreme, mat .-

matical analysis deals entirely with logical relationships. Betwoei

no*
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these methodological extrmes are investigative techniques such as

gamtng and simulation.

Using theoretical results to make judgments about real world

problems Is the payoff and presumably the purpose of operations research

activity. Whether this judgment is made by the operations researcher

or by someone else Is not a central issue. The important point is that

same form of application should be made. In this regard the following

quotation from Flagel, Huggins, and Roy (6) Is pertinent: "MThe charac-

teristic of a true operations research study is that It provide realls-

tic answers to an actual practical problem. In this context the tools

and technliques used should never be limiting; the goal is to select

techniques that allow all significant f=ctors of the actual problem to

be considered."

The Nature of this Work

In this work, assumptions are set forth that lead to a struc-

ture resembling a particular real world rllitary situation. Recursive

analysis methods and same notions from decision theory & - used to

determine and express the consequences of these L-sumptlons. 'he pur-

pose is to explicitly define the methods that are used, ahow how they

apply in deducing the consequences of a particular set of assumptions,

and quantitatively Illustrate the nature of the consequences by way of

numerical examples.

This Is a theoretical study that points out how a given type of

structure can be usefully analysed. It therefore seems important that

we seek 1;onerallty and flexibility. The results should show how to

I1
11
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approach a variety of related problems. We seek problem solving tech-

niques more than specific analytical or numerical results.

It is not our purpose to make judgments about specific real

vorld problems. This is properly the province of those who are diractly

tn'olved In the activities that are being stLdled. This might be the

concern of an operations research activity that is an integral part of

the military organisation that is conducting the activities of interest.

A certain amount of foundation can be laid in an isolated academic en-

vironment but if the model is to finally be truly effective, it and

the research that goes along vith it must become a part of the using

organisation. In a sense, the one iiho makes the application must also

be a researcher. He must modify and continually develop the theory.

Consider the notion of model "validation" in the light of the

preceding discussion, The model would be accepted as valid if its

structure parallels the real world situation of interest sufficiently

accurately to allow useful conclusions to be drawn. The decision maker

must decide whether or not this is true of a given model in a given

decision situation. Accordingly, the validity of an operations research

model is meaningful only when a specific decision is to be made; other-

vise, there is no basis for judging whether or not the model consti-

tutes a satisfactory representation and the concept of validity has no

meaning. Since we are not making decisions, model "validity" will not

be of concern. We should, however, be concerned with the logical con-

slstency of the theoretical structure. We may also be concerned that

real world situations exist for vtich some decision maker might be

willing to consider our structV-= a a "valid" representation when

.L
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making practical decisions. This last thought emphasites the import-

ance of generality and flexibility in our methods.

The approach that is developed in this report is basically

numerical. Some analytical relationships are investigated but the

complexity of the problem along with the critical need for flexibility

of the model seem to dictate a largely numerical approach. It should

be noted, however, that the recursive analysis techniques that are used

are subtile and powerful computational tools. The numerical character

of these techniques seems to pose no great practical problem since

computers are widely available to all potential users.

Related Literature

The air-to-ground attack problem as treated In this work does

not seam to be a very popular subject in the open literature. There

are, however, articles which relate to various aspects of our problem.

1he most applicable of these will be cited and categorized with some

indication of how they relate to our subject.

Stochastic Duels

Williams and Ancker (26) have developed a theory of "stochastic

duels" which they describe as follows:

In the "fundamental" duel, two dualists, A and B, fire at each
other until one is killed. A's firing time (that is, the time
bemoan rounds) is a random variable vith a known probability den-
sity function, fA(t). Successive firing times are selected from
fA(t), independently and at random. The situation is the same for
B except that his firing time has a different density function,
fB(t). Each time A fires, he has a fixed probability, PA' of
killing B. Similarly, B's kill probability is FB- After the
starting signal, each contestant, loads, aims, and fires the first
round. That is, in the "fundamental" duel, they start with
i ,1-.oad_-wepons. Both A. and B have unlimited supplies of
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ammition that, among other things, makes a kill a certainty.
A wins if he is the one to score a kill. The probability of
this will be called P(A) and P(A) + P(B) - 1.

In reference 26, P(A) is determined for the case where fA(t)

and fB(t) are negative exponential distributions. The effect of giving

one contestatt a random iritial time advantage is also Investigated.

In refernece 3, Ancker extends the model to the case where both con-

testants have limited ammuition supplies. He determines P(A), P(B),

and the probability that 'hev both run out of ammunition. Both of

these papers approach the problem by computing the distribution of time

to kill for vhe two contestants and then determining the probability

that one gets a kill before the other does.

In reierence 4, Ancker and Williams consider the fundamental

duel with discrete firing tines where A And B fire at fixed but possibly

different intervals and the ammunition supply is unlimited. They also

cons.der a case where the contestants fire simultaneously, a near miss

by one causes the other to lose one firing turn, and nmmunition is

umlimited. Finally, this paper considers duels that: are not one-on-

one.

K Our air-to-ground attack problem might be considered as a type

of duel where the contestants fire at each other simultancously each

time the aircraft makes a pass. If the aircraft. is contestant A and

the target with its defenses is contestant B, we are interested in P(A).

the probability that the aircraft kills the target before the aircraft

is killed. In our duel, however, contestant A has a limited ammunition

supply which he can fire In salvos with arbitrary salvo Wfectiveness

L
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versus salvo size. We are interested in maximizing P(A) and determin-

ing the best allocation of weapons among passes on the part of

contestant A. This type of duel is developed in Chapter V. Our

generalisation of the above type of duel, which is also developed in

Chapter V, *xcends the aircraft's options to include multiple modes of

wrapon delivery and it considers the aircraft's target acquisition

problem. A further complication of our duel Is that simply mximizing

the aircraft's probability of kill without regard for Its probability

of survival Is not appropriate. Because of this, we maximize the air-

craft's probability of kill subject to E constraint on its probability

of survival.

Some further papers on stochastic duels that appear in the

literature involve the distribution of the number of rounds fired,

reference 1, and the distribution of the time dtration, reference 2.

Tactical Air Games

Fulkerson and Johnson (16) formulate the following tactical air

game in which each side must continually allocate available aircraft

between counter air and ground support missions. They describe the

formulation as

a multi-move game in which both sides, at each period
of the campaign, simultaneously deploy their forces between the
two missions. Each force suffers a fixed rate of attrition per
period due to accidents, etc., and in addition loses planes pro-
portionally to the size of the enemy's attack on his air fields.
Replacements for each side are received periodwise, and these
may be functions of time. The payoff is assumed to be the
difference bstween the total number of ground support sorties
flown by the two sides during the campaign, discounted for future
time periods.

The symetrlc case in which the attrition rates are the same for both

sides is solved for both finite and infinite campaigns.

FV

i '
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Bellman and Dreyfus (7) show how to treat the same problem by

using dynamic programing. The model is further discussed and developed

by Weiss (25) and by Berkovitz and Dresher (8,9).

Two essential inputs for this model are the red and blue kill
=I

potential per plane sent against the op onent's air fields. For the

symmetric case, these are equal. Our model, particularly the duel of

Chapters III and IV (called herein the EH duel) should be helpful in

evaluating these quantities. Furthermore, once the number of ground

support sorties to be flown has been determined at a given stage of

the game, it is necessary to allocate those sorties among the prospec-

-ive targets and determine the best tactics for each raid. This problem

s treated in Chapter VII of this report.

Allocation of Weapons 4

Manne (20) discusses the problem of allocating a number of

weapons to a complex of targets. He reduces this problem to the form

Minimize a (1- I2P) (1)" i-I

n
subject to Z yj -m (2)

i

yj 0 J- l,--,n (3)

where j - l,---,n - the index on targets

aj - the unit worth of target j

4 The notation used in this section Is in keeping with the
weapon allocation literature and Is generally different from that in

the rest of the paper which is based on dynamic programing literature,

i.e., Ref. 17 and Ref. 22.
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Pj - the probability of kill for any weapon versus

target j

Yj - the number of weapons assigned to target J.

He then shows how to formulate the above as a transportation problem

which results In an integer solution.

G. a. den Broeder, Ellison, and Emerling (10) also consider the

weapon allocation problem and prove some applicable theorems. Using

the above notation where it is applicable, they first assume that

PI P2  --- pn p and consider the form

n
max V - Vk k (Yl,---,yn) (4)

k-I

n
subject to - yF - m (5)

jai

yj _ 0 j 1,---,n (6)

where V - expected value of the targets destroyed

Vk a the value of destroying exactly k targets

ak(yl,---,y n ) the probability of destroying exactly

k targets as a function of the allocation

(Ytl"--lYn)"

For this problem, they prove the following theorems I and 11.

"Theorem I. If the Vk are nondecreasing functions of k, then
the maximum V Is attained when the yj's differ by at most one."

"Theorem II. The probability, Pk, of destroying k or more
targets is, fo: each k, a maximum when the yjls differ by at
mo t one."

II
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They also consider the problem defined by equations (1), (2) and (3).

For that problem, they prove that the following theorem III holds

for all pj.

"Theorem I1. Given that j minimizes

n zA(m) ZJ1 aj (U -- pj)J (7) |

subject to Vi > 0 (8)

n
and Mm 9)Jal

then { minimizes

almil) Z aJ (I p) (10)

subject to > 0 (II)

n
am E Yj m (12)

i-i

if yj - 1 for J # k aid k y" .1, where k satisfies

(l Y)k ma aj (1-pj)YJ (13

ak (lP) Pk "1< J < n ajPi 1

According to the authors, If one Interprets a k (I - PkO y as a revised '
estimate of the value of the kth target based upon an optimum assign-

ment of m weapons, the procedure implicit in theorem III merely states

that an added weapon should be assigned to that target for which thei:
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expectation of (revised) value destroyed is largest. Thus, by starting

with m a 0, weapons can be added one at a time in such a way that the

allocation at each stage is optimal.

Lemna and David (18) extend the solution to the case where there

is more than one type of weapon available. Again, using the foregoing

notation where It is applicable, their problem takes the form

n Sk

Maximize - aj [I- T (I - P1 j)Yii ] (14)
J.l 1-1

subject to Z YiJ - 1,---,m (15)
J-i

J -

where PiJ - probability of kill for weapon type I

versus target J3

YiJ - number of weapons of type I allocated

to target J

* i - numnber of type i weapons that are available.

Their approach is to determine values L, which represent the nmber of

type 1 weapons required to be the equivalent of one type i weapon. By

using this device, the problem reduces to the fore of equations (1),

(2) and (3) that was considered by the previous two references. Lemns

and David indicate the possibility of solving the problem by the two

previous methods which both produce integer results. They also offer

a solution that they Indicate was obtained by the method of Lagrange

S I
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multipliers. This method treats the weapons being allocated, i.e.,

the equivalent number of type I weapons, as a continuously variable

quantity. The answer may involve fractional numbers of weapons.

Because of round-off error, this approach would be most applicabl, if

the number of weapons being allocated vas large compared to the number

Iof targets.

The weapon allocation papers that have been discussed can be

r6&ated to the air to groumd attack problem as follows. Suppose we

wish to maximise the expected value of the number of hits. We might

do this if the attacker's utility is a linear function of the number of

hits. Thus, we have the problema

n
Maximise £- £ Si rj(yj) (17)

subject to J E m (18)

, -

i ~~Yj 0 J -l--n(9

where J - l,---,n - index on air to ground pass

S - probability of the aircraft

surviving a pass

Iyj - the number of weapons delivered

on to jth pass

rj(yj) - the expected value of the number

of hits on pass J as a function of

the number of weapons delivered on

In

pass J.



22

m - the total number of veapons

carried by the aircraft.

Assuming stochastically independent delivery errors for the weapons

that are delivered on pass J, we have the special case where

r (y1) - I p) (20)

and equation (17) becomes

n
Maximise - Sj l - (I - pi) 7 i ] (21)

J-1

which has the same solution as

n
Minimise £ Sj (1 P )YJ (22)

i-I

which the same as (1) if aj is interpreted as Si.

The problem stated in equations (17), (18) and (19) is essen-

tially the same a" the simple EH duel of Chapter III. The recursive

analysis technique that is used in this work offers a practical way

of obtaining the solution with no special restrictions on the form of

the function rj(yj) although a form similar to that given by equation

(20) is used for the numerical examples. In addition, the use of

recursive analysis makes it practical to consider probabilistic target

acquisition, multiple modes of attack, and a constreint on the proba-

bility of the aircraft surviving the duel. Finally, the recursive

techniques allow solution of the problems that are discussed In

Chapters V and VI which are not treated in the foregoing articles.

! •
tI
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Sequential Decision Processes

The basic purpose of this investigation is to show hou to us~4
fully analyze problems related to the selection of tactics for air- -

ground attack. Dynamic programming is an extremely useful techniqu

for obtaining solutions to these problems. The dynamic programning

theory that is discussed and used herein was adapted or developed a ly

as needed to solve the specific problems at hand. These problems It -

volve sequential decision processes with a relatively small number 4--

stages.

The "principle of optimality" as introduced by Bellman (5) It

the starting point for developing all of the recursive relationshipe

that are disc'.sssed herein. The technique for applying the principle of

optimality to solve deterministic sequential decision problems is di

cussed by many authors including Bellman (5) and Nomhauser (22),

Chapter II. Howard (17) extends the application of this principle t

the solution of sequential decision problems involving Markov procesi is.

He provides for selecting, at each stage, the best act from an array

of alternative actions. Nemhauser (22), Chapter Y, discusses a still

more general form of multistage decision model which applies to what

he calls a "stochastic optimization problem" or a "multistage optimi-

zation under risk." He introduces a random variable, ks, at stage n

whose value determines the stage return and the state variable trans-

formation.5  He formulates the case where the k n are stochastically

5To illustrate the meaning of these terms, the "stages" gener-
ally correspond to passes in our problems; the "stage return" is the
utility derived from the weapons delivered on the correspo ding pass;
the "state variable" is a vector that characterizes the state affairs
when the aircraft is preparing to make a ,ass.

II
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independent from stage to stage. He also points out that if the dis-

tribution function of k. depends on k,.i, the value at the previous

stage, the process is Markovian. The probability distribution of kn

may also depend on the values taken by k ot all previous stages in

which case the process is not Markovian.

The Imonotonicity assumption" is basic to establishing the

optimality of the dynamic programing results. This assumption was

introduced by Mitten (21) and is further discussed by Denardo and

Mitten (12) and by Nomhauser (22). The exact statement of the mono-

tonicity assumption varies somewhat with each author making the state-

nent that best serves his own purposes.

Charnes and Schroeder (11) discuss sequential decision processes

from the stanrdp,!nt of multistage games or stochastic games. Their

paper reLe. hoavily on the work of Shapely (23). A stochastic game

consiste of a series of stages vhere the states occupied by two comn-

peting players are subject to probabilistic transition from stage to

stage according to transition probabilities controlled jointly by the

two players. Associated with each transition is a payoff from player

two to player one, i.e., the game is zero sum. A terminating stochas-

tic game is one in which at each stage there is a non-zero probability

of the play ending. Charnes and Schroeder, following Shapely's develop-

ment, show how such a game can be solved by iterative application of

linear programmng. T.ey also give a stopping criterion for the

iterative process.

Of particular interest here is the demonstration by Charnes ad

Schroeder that when player one knows player two's strategy at each
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stage, the stochastic game reduces to the discounted Markovian deci-

sion process that is discussed by Howard (17. If the process is

truncated so there Is a finite number of stages, Hoard'; value itera-

tion applies. If the process is not truncated so there is an infinite

nuber of stages, Hoard's "policy Iteration" algorithm applies.
2

Furthermore, Chrnes and Schroeder show how linear programming can be

used to determine the optimum stationary policy for the infinite stage

Markovlan decision process.

The technique for applying the principle of optimality to our

problems is discussed in Chapter II. The basic philosophy for dealing

vith multistage deciaion problems is similar to that of Nemhauser,

however, the subject is developed in such a way as to considerably I
simplify the development o: appropriate recursive relationships and

hopefully make them highly Intuitive. This simplification is important

when applying dynamic programming to complex problems. The monotonicty

assumption is stated here in such a way as to minimize the difficulties

L,.c.4itered in deciding whether or not It applies in a given situation.

The treatment of Markovian decision processes is developed in

Chapter II to the "t.ent of separating the state vector into two parts,

one of vhich is subject to probabilistic transformation while the other

is subject to a deterministic transformation that may depend on the

outcome of the probabilistic transformation. This inmovation resuits

in improved computational efficiency and a reduction in computer

mmory requirements. It also considerably simplifies the mechanics

of applying the resulting recursive relationship to th& problem. This

t technique does not appear in the litirature that has been reviewed.
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There also appears in Chapter IT of this work an "equivalence"

assumptlon. This assumption accompanies the monotonicity assumption

in establishing the optimality of the dynamic programming results ob-

tained for Markovian decision problems. This assumption is not made

explicit in the literature that has been reviewed, although it is in-

variably satisfied by the recursive relationships that appear. A

probable reason why the equivalence assumption does not appear in the

literature is that most discussion of Markovian decision processes is

in terms of additive present and future returns (see references 22, 17

and 11). in that case, the equivalence assumption is satisfied. In

this work, we treat the general case where present and future returns

are not necessarily additive (see Chapter V) so the equivalence assump-

tion becomes important.



CHAPTER I

GENERAL RECURSIVE RELATIONSHIPS

alysis of Multistage Systems

The purpose of this chapter is to develop and discuss some

generalized recursive relationships that will be used in later chapters.

This discussion will introduce some terminology and notation. It will

also make explicit the requirements that must be met if these recursive

relationships are to serve our purposes.

We are interested in making decisions relating to the perfor-

mance of serial multistage systems. Nemhauser (22) defines such a

system as "a set of stages Joined together in series so that the out-

put of one stage becomes the input to the next." Our problems involve

a finite, relatively small number of stages, i.e., an infinite stage

approximation as Introduced by Bellman (5, p. 11) is not generally

applicable.

Consider a system of stages indexed n 1 1, 2,---, N where each

stage In the system is characterized as follows. The state of the

system at stage n Is completely described by the state vector Xn .

The decision made at that stage is designated by the decision vector

Dn . The rturn realized depends on the state and the decision and is

denoted by the function rn(Xn, on). The output of stage n, which be-

comes the input P-ate for stage n-i, depends on the state and decision

at stage n and fs indicated by the following "transformation" relation-

ship.

27

Ll



28

Xn-I "tn (Xn, n) (1)

We will assume that tn (") is single valued. A system composed of a

series of N stages might be illustrated by Figure I which Is similar

to the corresponding diagrams used by Nemhauser (22).

The basic analysis approach to be followed involves composing

or "putting together" the system by starting at stage one and adding

one stage at a time to the already existing structure. The stages will

be numbered according to the order in which they are added in the com-

position process. The central idea of the composition process can be

described as follows.

Suppose we have an existing structure of n-1 stages. Since the

state of the system at stage n-I Is completely described by the state

vector Xn-l, then for a given system structure, no other input informa-

tion is required to determine the maximum return that is realizable

from the existing n-I stages. Let us designate this maximum return

from the n-1 stages as fn-1 (Xn-1)"

We now wish to expand the existing n-1 stage structure to include

stage n. The situation might be illustrated by the diagram in Figure 2.

The function

[r n.Dn), fn-I(X.)] -gn [X,, fn-l(X -1)]

-n [ Xn9Dn* fn-I (¢n(Xn'Dn))l (2)

characterizes the composition of the stage n return with the maximum

return available from the remaining n-1 stages. This will be referred

to as the "return function."
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The maximum composite n stage return is now determined, subject

to appropriate conditiona, by choosing the value of Dn that maximizes

the n stage return function.

-n(X) - Max gn [xn,Dn. fn-l(Xn-.)] (3)
Dn

Bellman and Dreyfus (6) indicate that the basic functional equation of

dynamic programming has the form of equation (3).

A Deterministic Decision Process

A deterministic decision process will be defined as one in which

the transformation relationship of equation (1) is such that X is

deterministically known if X. and Dn are known. We are interested in

specifying and justifying sufficient conditions such that if they are

met, recursive application of equation (3) to a deterministic decision

process will yield the maximum n stage return and the optimal decision

rule at each stage.

Suppose transformation relationships of the form of equation (1)

are given. Let S and n be sets of all allowable values of
are ive. LoSXnd SD (Xn)nXn n

and Dn9 respectively, at stage n where SDn(X n ) depends on Xn . Note

that these sets must have the property that if XnCSXn and DnISDn(Xn),

then tn(Xn,Dn) E SXn.I for all 2 < n < N.

Define the one stage return as gl(X 1 ,D 1 ), a function that is

defined for all XICSX1 and D1CSDI(Xl). Then the function

fl(X 1 ) - Max g 1 (X 1 ,D) (4)

IL SDI (X 1 )

iq defined for all X1 E SX; it is the naximum one stage return.
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Now let fn-l(Xn. 1 ) be the maximum n-I stage return as a func-

tion of Xn. 1 and let it be a function that is defined for all

Xn-l CXn- , 2 < n < N. Note that fn-l(Xn-l) can be visualized as the

result of having maximized some objective function relating to the n-I

stage structure subject to the condition that the state of the system

al stage n-I Is completely described by the state vector 1n- I .

The return function gn LXnDntfn-l(Xn-1)l characterizes the

composition of the return from stage n with the maximum return from the

remaining n-i stages. Suppose the function gn L has the following

property:

Monotonlcity: If fn.l(Xn-l) is replaced by an independent

variable, say y, gr LXnDn , y is defined and it is a

monotonically nondecreasing function of y for all Xn' S%,n

Dne SDn(Xn), and 2 < n < N.

Then it follows from the definitions of monotonicity and fn.l(Xn. 1 ) that

the function gn LXn'Dn'fn- (tn(XnDn))] represents the maximum return

that is obtainable from the n stage s7stem for given X and Dn .

Accordingly, the basic functional equation

f (X)- max gn tXn,Dn,fn-l(tn(XnDn))] (5)

n E SDn(Xn)

represents the maximum n stage return subject only to the value of X.;

the function fn(Xn) Is defined for all XnC Xn9 2 < n < N.

A proof of this statement appears in Appendix B.
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Thus fl(Xl) is the maximum one stage return and we have shown

that under suitable conditions, if fr_(Xn_) is the maximum n-I stage

return, then fn(Xn) is the maximum n -,tage return, So by mathematical

induction, fn(Xn) is the maximum n stage return for all XnE SXn and

1 <n < N.

We will no suvmarise the sufficient conditions for the opti-

mality of fn(Xn) in a deterministic decision process. For completeness,

let

gi LX.,D1 ,o(Xo)] - g1 (XIDI) (6)

for all XIESX and D1 E6S"(X I ) .

If the following transformation relationships are given,

Xnl -  n (nDn) 2<n<N

&here must exist sets S and SDn(Xr) such that if XnE S7 and Dnr SnD ")

then tn(Xn,Dn)E SXn.I for all 2 < n < N. Also, the function

91 [x1 l.ofo(xo)] must be defined for all X C SXl and D C

Furthermore, the function g LX n,Dnin(Xn.1)] must possesR the mono-

tonicity property that was defined previously in this section for all

Xn'_ Sy Dn 1 SDn(Xn)' and 2 < n < N. If the foregoing conditions are

met, then recursive application of equation (5) will yield the maximum

n stage return for all 1 < n < N.

A Generalized Markovian Decision Process

In the deterministic decision process, the transformation re-

lationship, equation (2), relates the state of the system at stage n-I
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deterinistically to thae state of the system, Xn, arid the decision, Dn,

at stage ni. We will now consider the situation where the state or the

system at stage n-i Is a random variable with a probability function

that depends on Xn and On. This conditional probability function will

be denoted p(Xn 1 ( Xn;Dn). This Is a Markov process since

P'Xn-I Xn;n) -P(Xn-i I X-1--X;D.N1-',

I < "<N (7)

With this procems in mind, suppose that we have an existing n-i

stAge -tructure. Since the process of Interest is now a stochastic

process, the n-i stage return for a giver, value of XnIis a random

variable. Let ft 1 (Xn 1 ) denote the maxium expected value of the n-i

stage return. We wish to expand th'e structure to Include stage n. In

general, the composite return of stage n and the remaining n-I stages

depends on Xn, Dn. and YXn-. Denote this composite return by the re-

turn function gn L~.nX-Lf-(nl] Then the s m. rzexpc-I.

value of the n stage return, subject to sultatle conditions, is given

by

f (X )- Max PXiInn

For our purposes, equation (8) is the basic functional equation that

applies to Markovian decision processes.



~34

A SPecial Markovian Decision Process

We will now discuss a special case of the Markovian decision

process that is or particular interest in the applications that are to

be considered.

Suppose the componhnts of the state vector can be divided into

two sets as follows. Suppose the first set consists of one component,

the value of which can be designated by the integer variable I.

I < i < I. The variable I will be said to designate the Markov state

of the system (for reasons that will become clear). The remaining com-

ponents of the state vector completely describe the state of the system

in all respects other than the Markov state. The vector composed of

these remaining components will be referred to as the "residual state

vector" and will be designated .

Now suppose that trasiqjitions among the Markov states ere proba-

bilistic and are governrod by a stochastic matrix of transition proba-

oilities having elemertn designated Pij(Dn) i.e., Pij(Dn) is the

conditional probability of being in ?4arkov state j at stage n-l given

that the system is in Markov state i at stage n when decision Dn Is

made. Let the transformation of the residual state of the system be

deterministic for given n, i, J. The residual state of the system at

stage n-I is determined by the transformation relation

Xn. I ' o tni j  Dn) (9)

Thus, we have probabilistic transition among the Markov states

which controls the transformation of the residual state vector.
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The foregoing can be related to the basic functional equati 71

(8) as follows. Recalling the notation that was described In the Irst

paragraph of the previous section, che conditional probabitLity ftum lon

that appears in equation (8) can be expressed as2

P(Xn.. Xn;Dn) - p(Xn.,J XI;Dn)

- Pl(Xn-1 I J,X 1 ,i;Dn) p2 (j X,;Dn) D)

Now considering equation (9),

PI(Xn.l J, ',;D n) . 1.0 W!).

if Xn. I is the value given by equation (9) and pl(X., J ,Xnl;Dn, ts

zero otherwise. Thus, equation (10) can be written as

r'(n-1 I X1n;Dn) - p2(J IXi l r.

Now assuming thAt the value taken by j Is stochastically irdepernder

of Xn, i.e., the Markov state at stage n-I is independent of the re

sidual state at stage n, equation (12) becomes

P(Xn-I I Xn;on) -, P20J [;n) Pt.j(D n )  )

2 The quantity p(Xn.1,J I 4,i;Dn) is a conditional Joint pi2

bility function In the random variables .; and J. The second
equality in equation (10) follows from a relation in basic probahil V

theory. If u and v are random variables with the .Joint prbabill
function h(u,v), then h(u,v) - hl(u I v) h 2 (v) where h 1 (u 1 v"

the conditional probability function of u for given v and h2 (T) is ,e

marginal probability function of v,
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Here we have Introduccd a convention that Markov state variables and

stage indices will appear as subscripts while residual state variables

Ct and decision variables will appear as arguments. This convention will
E

be followed henceforth.

Since the Markov state variables are to appear as subscripts,

r the factor gn [ -..] that appears in equation (8) becomes

E,[" gn~1 LX.~Dn 9X'n:ifnl,,(Xn-l)3 (14)

and if Xn:l is replaced by its equivalent from equation (9),

S. gnij EXn'Dn-'fn-l,j(tnij(Xn,Dn))] (15)

Finally, for this special case, equation (8) becomes

f 1 ,i(X')-M ax ~tP( 1 )gj

on Ln) ulj LXn nlfnol,J(tnij

Note that the prime on the gniJ E .... in equation (14) does not

appear in aquations (15) and (16) because the gnij [ .... ] that appears

in equatims (15) and (16) represents a functional form that is differ-
I -

ent fro the functional form represented by the gntJ L*..J that appears

in equation (14),

We will now proceed to specify and Justify sufficient conditions

such that if they are met, recursive application of equation (16) will

result in values of fni( ) that represent the maximum expected value

of the n stage return.

Suppose transformation relationships of the form of equation (9)

are given. Let Q- and SD ) sets of all allowable values of

and Dn respectively at stage n, where SDn(X ) depends on Xn. These

! i n
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sets mist have the property that if XnSE and DnC Sn (YX), then

for all 1 < I < I, 1 < j < I, 2 < n < N.
~~tnlJ 'On) CS-1 .. . .

Define the mne stage return as gltj(X1,D 1 ), a functico-. that is

defined for all XIESX,,DlE SDI(j), 1 < i < I, I < J:S i. Then the

function

I
fli(x1)- max Z Pij(DI ) glIjO(1 ,D) (17)DIE 5DI(XI) J-1

is the maximum expected value of the one stage return; It Is defined

for all XIES x, I < I < I.

1

Now let f j (X'I) be the maximum expected value of the n-1

stage return and let it be a function that is defined for all
Xn- 1 ES,-l-. 1 < J S I, 2 < n < N. Note that fn.lj(X.l) can be

visualized as the result of having maximized some objective function

relating to the n-1 stage structure subject to the condition that the

Markov state variable takes the value j and the residual state vector
takes the value at stage n-i.

The return function gniJ XnDn'fn-lJ(Xn-1)] characterizes the

composition of the return from stage n with the maximum expected value

of the return from the remaining n-I stages. Suppose that for all

n 1 <i< I, I < J C I, 2 <n < N, the return

function gnij * has the following two properties:

1. monotonicity: If f l,(Xn.l) is repleced by an independent

variable, say y, gnIj LXnDn,y] is defined and it is a mono-

tonically nondecreaslng fuctlon of y.
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2. equivalence: If Z is a random variable and E(Z) repre-

3ents the expected value of Z, then

E [gn*jgyDnZ)] - nL ,D'E(Z)]
n O I-gi Y I

Given these properties, the function gnij LXDnfn-l,j(X-I)1 repre-

sents the maximum expected value of return that is obtainable frn the
,3

n stage system for given values of X'Dn ,J. It follows that the

functional equation

I

JMax Z Pjj(D n) gni [XnJDnlfniJ(tnij(Xnt n))l
Dn C Sn(X)"

(18)

represents the maximum expected value of the n stage return subject to

the condition that the residual state vector takes the value Xn anvt the

Markov state variable takes the value I at stage n. The function

fn (Xn) is defined for all XESy , I < I < 1, 2 < n < N.

Thus, fli(X') is the maximum expected value of the one stage

return and we have shown that if fn.,(X_ 1 ) is the maximum expected

value of the n-I stage return, then f n(Xn) is the maximum expected

value of the n stage return subject to suitable conditions. So by
t

mathematical induction, fni(Xn) is the maximum expected value of the

n stage return for all X4CS X , 1 < I < I, 1 < n < N.
n

The sufficient conditions for the optimality of fni(Xn) will now

be summarized for the special Markovian decision process. For complete-

ness, let glij Cx1'D 1'fojXloJ - g1 1 j(XID 1 ) (19)

for all XjIDIitJ in their respective sets.

3A proof of this statement appears In Appendix B.
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If we are given the transformation relationships

Xn 1  n j (  ; 2 < n < N (20)

I< I <

there must exist sets of allowable values of and Dn, , and

sD (X, such that if KXsx9 and Di X, then tnij(x,')niSxS-
nDf n nnESn n-I

for all 1 < I < I, 1 < j < . Also, the function g11j [X 1 Dl,fo(Xo )]

must be defined for all X14SX,,DiESnI(Xi). I < 1< I and I < J SI.

Furthermore, the function g ij [ '"Dn.j(xn-i)] must possess the

montotonicity and equivalence properties that were defined previously

in this section for all XnCS ,. I %S " 1< i< x, I < j SD

2<n<Nn

If the foregoing conditions are met, then recursive application

of equaticr- (18) will yield the maximum expected value of the n stage

return for all X CSz., I < i <. <, I < n < N.
n

A Harkov Decision Process with Unobservable

Markov State Transitions

The discussion so far has presupposed a knowledge of the state

of the system at all stages. It will be useful for later reference to

indicate a functional equation for a case where the Harkov state

transitions are not observable, hence the Markov state of the system is

only probabilistically known for n < N.

Let T N(I) be the probability function of the Markov state at

stage N. Let Tn(I; 'TN, DN, DN-V,---,D 1 ) be the probability function

IA.. .. .....
VI

,U
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of I at stage n. The function nrn(i; nNDN9 DN.,---,Dn+l) can be

evaluated by multiplication of nN(1) and the 3ucceeding matrices of

transition probabilities.

The functional equation for this situation can be developed by

starting from equation (18). Since the Markov state, I, is only known

I'" probabilistically at each stage, the maximum n stage return will be

taken as the maximm expected value of the return taken over the random

variable I. This maximum n stage return depends on the initial proba-

bility function TTN and it depends on the decisions made at stages N,

N-l,=--,n4l; it will be denoted fn(Xn, nN, DN,---Dn I). The turn

function may depend on the stage and the Markov states involved; hence,

the return function is definod as gniJ CX'Dnfn (X n°' T ) --- 1D

Xnn n1n-' ' N' Dn)

The quantity } in equation (18) thus becomes

I {~~~Jl Pi(n) gntJ L'nlfn-I(Xn:I'TTN No ''n]

F Since this quantity is the aximum expected value of the n stage return

I for given n, Xn,Dn, and I and since I is a random variable, the maxi-

mum expected value of the n stage return for given n, X, and Dn is

given by

) I
- - nn (I; TTN, DN, DN-1,---,IDn+1 )  •

Taking the maximm over Dn gives

I

fn(X, 'TN, DN , DN.I---,Dn 1 1 - Max E rrn(l;nNDNDNl,.---Dnl)
Dn C SDn(X) i-1

I
E Pij(Dn) gnij xn, n3, .(Xn-, rTN, DN DN.,.-,Dn)] (21)

J-i

I.1

I.
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The high dimensionality of equation (21) vill probably r e- I t im-

practical to Implement for most cases, but it is useful to have an

5 indication of the type of relationship that is involved.

If an Implemmtation of equation (21) were undertaken, it would

involve determining Trn(I; TT, N,---,D,,,) for all feasible sequences

of Dn and for all n. The results could then be used in equation (21)

to determine the optimm decision at stage n, DAOL , ITN, DN, %-i,

-Dn+l). The residual state variable transformation relations could

then be used to determine the optimum sequence

NI

t

I?

I

, A



CHAPTER III

THE SIMPLE E. DUEL

Recursive Relationihips

Having developed some basic functional equations, we will now

consider how they might be usefully applied to the air-to-ground

attack problem. The number of hits achieved by the aircraft is a

random variable. This chapter considers situations where the return

of interest is the expected value of the number of hits. The cost is

in terms of the number of aircraft lost.

The first problem will be a very simple duel in which we seek

to maximize the expected value of the number of hits (hereafter re-

ferred to as "expected hits") achievable by a single aircraft attacking

a defended ground target. This will be referred to as the "simple EH

duel."

Suppose an aircraft with xN bombs on board is to make not more

than N weapon delivery passes. A salvo of d bt'!-,! !T tn be delivered

on the pass n subject to the restrictions that

N
, dn < xN (1)

n-I

d n  > 0 I <n < N (2)

1Throughout this work, a duel involving allocation of weapons
among passes and not including probabilistic target acquisition or
multiple modes of attack is referred to as a "simple" duel.

42
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Throughout this work, xn and dn are assumed to be discrete

variablcs. The unit of weapons will normally be referred to as a bomb;

however, it cculd represent a cluster of bombs or a salvo of rockets.

Let ST represent the probability that on a jiven pass, the air-

craft survives long enough to deliver weapons. Let Su represent the

conditions- probability that the aircraft survives the pass given that

it survives long enough to deliver weapons on that pass. In this con-

text, we will interpret "not surviving" as the occurrence of an enemy

action that prevents the aircraft from participating further in the

attack. This could mean anything from imediate kill of the aircraft

to relatively minor damage.

To apply recursive analysis to this problem, a pass will be

identified as nne stage. It is not necessary, but It will be convenient

to number the passes in reverse order so that the chronologically last

pass is pass number one. The state of the system when preparing for

pass n, i.e., at stage n. can be completely defined by specifying the

number of weapons remaining, denoted xn,. Thus x n will be th- :!tate

variable playing the role that the state vector, Xn, played In the

general formulation of Chapter II. Let the number of weapons delivered

on pass n, dn, be the decision variable analogous to Dn.

If dn weapons are delivered an pass n. then

Xn. 1  x n  dn ; <n < N (3)

Thus, since the state variable is subject to deterministic transforma-

tion, we have a deterministic decision process. In studying this pro-

cess, the stage return, rH(dn), will be the expected hits per salvo

H~ n
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as a function of salvo size. The function fn(xn) will represent the

maxlmum expected hits achievable on the remaining n passes If there are

xn veapons remaining.

To satisfy the sufficient conditions for optimality, we must

show the existence of sets SXn and such that XnCSX and

dnESd for all I < n < N. It can be seen by Inspection of the trans-

formation relationship, equation (1), and considering the non-negativity

of dn, that the sets

Sxn1  {n: n{Ofl---, ; 1< n <N (4)

and

Sd (xn) - dn:dn{0O9 --- xnjj} < n <. N (5)

satisfy the requirement. The quantity RN > 0 is the largest number of

weapons that might be of interest at pass N. 2

The return function must be formulated next. If one pass re-

mains and d, weapons are to be delivered, then the expected hits is

the probability of surviving to the point of weapon delivery times

rll(dl); leftover weapons have no value. Thus,

g, [xI, dl, fo(xo)] - ST rH(dl) ; n - 1 (6)

where the functions in equation (6) must be def!ned for all x ESx

and d rd 1 (xl).

2 Once a value of iN Is established, the actual number of weapons
avallable at stage N, XN, can take my value such that x < " The

XN !SfN
value of FN only establishes the range of values of XN for which solu-
tions will be obtained.

'2 __
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When more than one pasr remains, the composition of the maxiutm

n-I stage return, fni(Xn.1), with the stage n return, rH(dn), can be

accomplished as follows. The expected hits for pass n Is the probe-

bility of surviving to the point of weapon release times the expected

hits obtained on the salvo that is delivered. The ma.:rlru xopa.cte l

hits fot the rmaining n-i passes Is th6 probability of surviving pass 'I
r times fn-l(Xn-l). Thus,

gn Xn' dn, fnl(xn-I)] " ST rH(dn) + ST Su fn-l(xn-I ) ; 2 n N

(7)

By examining equation (6), we see that if r H(dl) is det'ined for

all xlEC S.l and dl Sdl(Xl) , then the return function for n - I is de-

fined for all XlESx, and dlESd (xl).

Furthermore, when 2 < n < N, we see from equation (7) tija,. If

rH(dfl) I., def ined for &lI I nrS and dnE Sd (xv) , then the return
n n

f,"iction meets the monotonicity requirement that is defined In Chapter

II for a deterministic decision p,'ocess. The previous statement isI.
true because S1 > 0 and S. : 0.

Note that the function gn L"] is indexed by stage so its form

and Its associated coefficients can therefore be made stage dependent.

Accordingly, the function rH and the quantities ST and Su could carry

the subscript n. This will be understood to be true throughout this

work but the subscript is not carried explicitly because it would make

the notation more awkward vithout adding significantly to the content

of the work.

t
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We have now defined sets and return functions so that the suf-

ficient conditions for optimality are satisfied. Recursive applica-

3tion of equation (11-5) will y1eld the desired fn (xn). Substituting

equitio.s (5) and (6) into (II-V) and considering equation (4) gives

fl(xl) - Max LST rH(d) ; 0 < x I  N
0 < d1

Since rH(d) is assumed to be a nondecreasing function of d,

fI(x1 ) m ST rH(x1) ; 0 < <(9)

Substitution of equations (3), (5), and (7) into (TT-5) and considering

equation (4) gives

fn(xn) - Max tST rH(dn) S u u fnl(xn - dn)] ; < <_ xn <
0 < dn < xn -- -- 2<n<N

(10)

Equations (9) and (10) constitute the recursive relationships

that apply to the simple duel.

Concavity of fn(xn)

It is generally a supportable assumption that rH(dn ) is a concave

function of dn. It can be shown that when this is true, the fn(xn) de-

termined from equations (9) and (10) are concave functions of x for all

3The equation numbers start from (1) In each chapter. When re-
ferring to an equation of the current chapter, its arabic number will
be used. When referring to an equation of a previous chapter, its

arab!c number will be preceded by the appropriate Roman numeral chapter
number.
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I < n < N. '.his can be proved as follows. First, if n - 1, equation

(9) shows that since ST i 0 and rH(d I) is concave in dl, then fl(xl)
X

is concave in x1 .

Now If 2 < n < N, consider equation (10). Note that if r.(d n )

is concave and if fn-l(xn - dn ) is a concave function of x- dn then

since ST > 0 ard Su 0 0, the expression

g' (Xn, dn) , ST [rH(dn) + S u tn,(xn - dn)] (11)
a

is a concave function of x. and d.. To show this for a given n let u1

and u2 be arbitrary values of' x n and let vl and v2 be arbitrary values

of d n where ul , u2ESxn and Vl v2 2ESdn(xn). For 0<_. < 1,

g'(%n,d n ) - ST [rH(vl.(l-k) V2 ) + Sufn.i(XUl(l-) u 2 -kvl-( .X)v 2 )]

S rH(vl)-(l) v2) r+ Sufn. 1 S n(u vl) + (-()(u2-v2) 2

S~jArmvi)+ (-4)N~v) +SuLkfnl~u~vl # 1-ufn.l(u2rv2)]

- 4T LrH(v I ) + Su fn-l(Ul-Vl)] * (l-X)trH(v 2 ) + Sufn.l(U2-V2) ]

-Ag' (ulV 1 ) * (1-) g'(u 2,v2 ) (12)

A proof given by Bellman (5, p. 21) can now be used to show

that the following Is a concave function of rn.

f (x)- Max g'(xn,d n ) (13)0 < d < x n

2This proof by Bellman Is included here rather than simply
referencing it because it is vital to include some such proof in the
demonstration of concavity. The reader may not have ready access to
Ref. 5 and furthermore, some smali notational adjustments have been
made in adapting the proof for our purpose.
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For a given n and using the previous definitions of ui, u2 , Vl, v2, X.

fn(xn) - fn(kul + (I-X) u2 ) - 0 M ax g' (Lul+(l-X)u2,dn)
0 k <Ul(l-)u 2

(14)

The quantity dn can be replaced by dn - v + (l-X)v 2 where v, and v2

range independently over the intervals 0 < vI < Ul, 0 <. v2 < u2 . Now

for given X, we seek optimiLing values of v, and v2 .

n(U (-X)u 2 ) - Max g'[,Ul*(-,)u 2 ,vl (1-X)v 2] (15)
0 < vi S u1

0 < v2 S u2

Since g'(x n, dn ) is concave in xn, dn,

g, ,,Ul+(lX)u2, Vl x(k)v2 " t_ g'(ulVl ) ( 1 4- ) g'(u2 ,v2 ) (16)

Hence,

fHnul+(v-1)u2) > Max [x" (1 ,vI) 4 (I- ) g' (u2 ,v2 )]0 < Vi <_. uI

0<v2 S_ u2

> x Max g'(ul,v 1 ) (1-) Max g'(u 2 ,v2 )
0 < v I <u 0 S v 2 < u2

n Xfn(u 1 ) + (-) fn(u2) (17)

The foregoing shows that if rH(dn ) is concave in dn, then fl(xl)

is concave in x1 . It further shows that if In addition n( - dn)

is concave In x n - dn ' then fn(Xn) is concave in xn . Thus, by

.i
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t mathematical induction, fn(xn) as defined by equations (9) and (10) is

concave in xn for all I < n < N.

This concavity is a useful property because it simplifies the

determination of the optimum salvo size, d *(X n ) when applying equation

(10). This simplification comes about in finding the maximum because,

given concavity, any local maximum is also a global maximum. 4

Numerical Example

As a numerical example to illustrate the application of equations

(9) and (10), let

N - 6 passes

xN - 8 weapons

S - 1.0

Su  M O. #8

and suppose rH(dn) has the form

rH(dn) - y (1-0 d n ) ; 0< e < 1.0 (18)

>0

For this example, let

Throughout this work, considerable use will be made of this

f orm, i.e., equation (18), for the salvo effectiveness function. Note

that In equation (18), rH(d n) Is a monotonically nondecreasing concave =

function of d. , This functional form provides a two parameter family

of functions that can be used to approximate a considerable variety of

possible salvo effectiveness functions. The form is appropriate

'-
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bicause salvo effectiveness functions are monotonically noudecreasing

functions and they tend to be concave, i.e., salvo effectiveness in-

creases monotonically with salvo size, but there tends to be a

diminishing return with increased salvo size. Furthermore, this form

will accomodate the case where we seek to kill the target and indi-

vidual members of the salvo are assumed to be delivered independently.

For this latter case, e is interpreted as the probability that the

target survives a single weapon and t+ - 1.0.

Figure 3 illustrates the rH(d n ) function and Table 1 shows the

results of carrying out the calculations. From this table, we can

read the optimum allocation of weapons among the passes and the maxi-

mum expected hits for any initial bomb load up to eight and for any

limiting number of passes up to six. Given eight bombs (xN - 8) and a

maximum of six passes (N - 6), then the expected hits, f6 (8), is 1.179.

The optimum allocation of weapons is (d6 , d 5 
9, d4 , d3*, d2 , d ) -

(2,2,1,1,1,1). It is satisfying to note that for any given n, fn(Xn)

is an increasing function of xn and for any given xn, fn(Xn) is an

increasing function of n as would be expected.

It is interesting to note that fifty-three seconds were required

for a Fortran IV program on an IBM 7094 to generate 120 such tables

with N - 10 and - 12. The concavity property was not used in this

program, i.e., complete enumeration was carried out. Accordingly, the

running time could probably be reduced by using the concavity property.

Iii
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Non Recursive Form

Insight can be gained by stating the problem In non recursive

form. Let Rn(dn, dn.l,---,d1 ) denote the expected hits obtainable onI
passes n,---,l for a given allocation. The constraints stated in

equations (1), (2), and (3) must be met. With one pass remaining, we

have

R(dl) - ST r1j(d1) (19)

j With two passes remaining,

R2 (d2, dl) M STrH(d2) + S Su Rl(dl)

i

- STrH(d2) + ST 2 S. rH(dl) (20)I

With three passes remaining,

R3 (d3 , d2, dl) - ST rH(d3 ) + ST Su R2(d2 , d1 )

-T rH(d 3) + ST2 S rH(d2 ) + ST3 Su
2 rh(d i)  (21)

II

With N passes remaining,

RN(dN"''-,dl) "ST n-Il' (ST S U)N ' rjj(dn) (22)

Thus, the original optimization problem might be stated as

follows:

fN(xN) - Max ST Z (ST Su)N  rH(dn ) (23)
dNI ..,dl r4l
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subject to

N

Sd n < X N  (24)

dn >0 ; 1 < n < N (25)

This problem has the same form as a problem of sequential allocation

with discounting. The product ST Su might be interpreted as a discount

factor as used, for example, by Howard (17).

A Parametric Investigation

We have seen an example of the type of solution that Is obtained

for given values of the input parameters. It is of interest to see how

the optimal allocation, (dN*, dN..l*,-.-,dl*), and the maximum expected

hits, fN(XN), vary for a range of input parameter values. This inves-

tigation ca-a be facilitAted by making use of the non recursive state-

ment of the problem, equations (23), (24), and (25).

Assume that rH(dn) can be expressed by equation (18). Then

equation (23) becomes

N N-n dn
fN(XN) - ST [ Max Z (ST Su) (1-0n)] (26)Sd l,---,d N n-I

With the problem exprassed il this form, it is clear that the optimal

allocation for given N and XN depends only on the two quantities (STSu)

and 0 mind not on

Table 2 shows the variation of (dN*, dN1 *,---,dl*) versus

(ST SU ) and 0 when XN - 8 and N - 8. The appropriate salvo effective-

ness functions are shown in Figure 3. Note that because of the

pI
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discounting strueture, if n, > n2 , then n > dn2. Thus with xN -8

there will never be any reason to make more thane eight passes so all

the (dN*,--.,dl) in Table 2 are optimum.

As might be expected for given 0, higher survival probability,

i.e., larger (ST SU), leads to more passes. Also, for given (ST Su),

smaller values of 9 lead to more passes. This is reasonable if we

view 0 as controlling the rate at which rH(dn ) approaches Its asymptotic

level +1 ; see equation (18) and Figure 3. If 0 is small, it means that

the marginal value of increasing dn decreases rapidly as dn increases.

This makes small salvo size and a corresponding larger number of passes

more advantageous at a fixed survival level.

It is often true that the probability of survival per pass,

(ST Su), is greater than 0.98. If iv were not, a sustained air-to-

ground effort would probably be Itmpractiial. This being the case, unless

8 is close to 1.0, Table 2 Iricates that the optimal alloc tion tends

to be an even distribution of weapons among passes. The case where

both (ST Su ) and 0 approach 1.0 enters a region where the optimal allo-

cation is quite sensitive to both (ST Su ) ad e as is illustrated bv

Tabi* 2 but is rather uninteresting otherwise as is borne out by

Figure 4.

Figure 4 shows the variation of t 8 (8) versus S and e when

ST - ' - 1.0. This figure gives the impression that as the value of

decreases, f8 (8) becomes more sensitive !-c the value of *u" This Is

reasonable because as e decreases, the tendency is to make more passes,

thus making survival more important. Based on ihe salie tvpe of reason-

ing, it is reasonable for f8 (8) to be more sensitive to S,. ac the value

of SU approaches 1.0.

. . .
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5T= 1.0

CO 1.4 . .. .

. O.C

> 0.4 -

F- -- ___ __.^

0.80 ,.C2 0.84 0.8 0.06 0.90 0.92 0.94 0.96 0.98 1.0

SINGLE PASS SURVIVAL PROBABILITY (S. )

Fig. 4.--Maximum return versus survival probability and

weapon effectiveness.II
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Return Versus Attrition

A very important concept will now be introduced. The discussion

so tar has considered maximizing the expected hits per duel. This has

been referred to as the return. The example of Table I shows that the

return is appreciably h.gher for six passes than it is for only one

pass.

The forsgoing tells only part of the story. In addition to the

return, the cost must be considered. Cost will be measured in terms

of aircraft lost c: "attrition." When only one aircraft Is involved

as in the present discussion, expected attrition will indicate the

probability of the aircraft not surviving.

Note that for a complete model, the cost should also include

other factors such as the cost of weapons and the cost of fuel. These

will be excluded here since they are often negligil-! compared to the

cost of replacing aircraft and pilots. Further, including such other

costs is generally a straightforward procedure. For the simple duel,

the nmaximum expected attrition is given by

LD - 1- (ST Su)N (28)

Note that the actual expected attrition may be different from the maxi-

mum expected attrition since the optitmu solutiorn may call foi- less

than N passes.

Figure 5 shows a return-versus-attrition function for the ex.

ample of Table 1. This figure applies to the case where tix weapons

are available at stage N, i.e., xN - 6, and N is varied from 1 to 6.
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This figure shows the return as a function of the actual expected

attrition because in the example, it is optimal to make N passes if

N < 6.

The expected attrition entries frnm left to right on the abs-

cissa scale in Figure 5 are the values obtained from equation (28)

when ST Su = 0.98 and N - 1,2,3,4,5,6, respectively. At each level of

expected attrition, the return is the maximum expected hits assuming

that an optimum weapon allocation Is used. For example, the attrition

level of 0.06 results when N - 3. We see from Table I that when N - 3

and x3 - 6, the maximum expected hits, f 3 (6) is 0.866. Thus, the

ordinate value is 0.866 corresponding to an expected attrition of 0.06

in Figure 5. The optimum weapon allocation when N - 3 and x3 - 6 can3i

also be read from Table 1 -s (d3 *, d2  dl*) - (2,2,2).

We have now developed a model for optimizing the simple EH duel

and shown how its results can be used to determine the return-versus-

attrition function. We will proceed to complicate and modify our no-

tion of a duel, but the return-versus-attrition function will be a

basic characteriting feature of all the duels that will be studied.

In addition to studying other duels, determining which of the

points on tha return-versus-attrition function corresponds to the most

desirable weapon allocation will also be the subject of considerable

subsequent discussion.

I

iii
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CHAPTER IV

GENERALIZING THE - DUEL'

Incorporating Probabilistlc Target Acquisition

We continue considering a multiple pass air-to-ground attack

where the return is in terms of expected hits and the cost is In terms 4

of the number of aircraft lost. All the features of the simple EH duel

are still present and same additional factors viii be Included.

The simple EH duel assumes the weapons allocated to a pass are

sure to be delivered if the aircraft survives long enough. In present

close support operations, the presence of a forward air controller who

directs the attack generally makes this a valid assumption. Likewise,

the assumption is reasonable for many interdiction attacks on easily

acquired targets such as bridjes or harbor facilities.

There are also interesting situations, however, where the target

is not easily acquired and there Is no forward air controller. This

occurs under conditions which may Include night, bad weather, and

obscu.a targets. The ability of the aircraft to acquire targets Is

related to its sensor capability and its navigation system. Considers-

tian of this sort are becoming increasingly important in the analysis

of weapon systems that are technologically advanced.

lit may be useful to the reader to refer to Appendix A either

in conjunction with or after reading Chapter IV. That appendix Indi-
cates how the problem of Chapter IV can be approached by first making
a non recursive statement of the problem and then developing the re-cursive relationships in a anner similar to that of Nemhvssr (22).

61
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Consider the following abstraction of the target acquisition

aspect of the problem. This discussion extends the general discussion

that appeared in the second section of Chapter I. An "initial" pass

is made when the target has not been acquired previously on the same

sortie. Once target acquisition has occurred, additional passes on

the same sortie will be referred to as "subsequent" passes. This dis-

tinction allows for improved target acquisition capability once the

target has been seen.I/hen an initial pass is made, one of the following three events

viii occur:

Ao* : the target is not acquired

AoD*: the target Is acquired but weapon delivery is

not possible

AoD: the target is acquired and weapon delivery

is possible.

The corresponding events for a subsequent pass are symbolized A,*,

AI D , and AID. Since weapon delivery may or may not be possible on

pass n, transformation of the state variable xn is probabilistic and

we have a Markovian decision process.

To apply the recursive relationship that was developed in

Chapter II for a Markovian decision process, equation (11-18), three

levels for the Markov state variable i are defined as follows:

t - 1: acquisition has not yet occurred

I - 2: acquisition has occurred and nn weapons were

delivered on the most recenc -ss

i - 3t acquisition has occurred and weapons were A

delivered on the most recent pass.

i

I: ' I : | : i . . ... . i I I I I I
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In the present case, the transition probability is independent of the _

stage n decision, dn. so we shall simply denote the transition proba-

bility as piJ. The matrix of transition probabilities Is given in

Figure 6 for the systam that has been described.

i

-i j-2 j-3
A* AD* AD

i - I:A p P(A"- ) pI2 -- Pcp*) p13 . P(A(p)

" P(Ao) - P(A01)

I - 2:AD* P2 1 - 0 P2 2  I 1 - P(AID) P2 3 - P(AID)

i - 3:AD P31 M 0 P32 I - P(AlD) P33 - P(AID)

Fig. 6.--Markov state transition probabilities.

Transformation of the state variable xn depends on the transi-

tion that occurs in the Markov state (analogous to equation (11-9)).

If transition is to Maricov state 1 or 2, no weapons are delivered. If

transition is to Narkov state 3, dn weapons are delivered, hence for i

all I < n <N and I < i < 3, i

AXn. 1 - x n  ; J- 1,2

Xn- 1 - xn-d n  ; J 3

It can be seen by inspection of the transformation relation equa- _

tion (1) and considering the non negativity of dn that the folloving

_ _ _ A ..
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sets have the required property that xn S and dlCSd (x,) for all

I < n < N, 1 < I < 3, 1 < j < 3.

Xn { X n{O~IX}} (2)

Sd (xn) - dn: dnE{Oil-.xn} (3)

Return functions that have the required monotonicity and eqtil-

valence as defined in Chapter Il will now be developed. Weapon delivery

occurs only when transition is to Marko state 3 and the aircraft sur-

vives to the point of weapon release. Thus, if n - 1 and for all

I- I < 31<1<~i 3,

glij [xlx dl, foj(xo)] 0 ; J- 1,2

ST rH(dl) ; J 3 (4)

When transition is to Harkov states I or 2, no weapons are

delivered. If fni(xn) represents the maximum expected hits achievable

in n passes with x n weapons arad in Markov state 1, then the return

associated with transition to Markov states 1 or 2 is thtt probabl!tv

of surviving pass n times fn-l,J(xn-1), The returti -ssociated with

transition to Markov state 3 is the probability of surviving to the

point of weapon delivery times the expected lilts achievable by the

salvo that is delivered on pass n plus the probability of surviving

pass n times fn-l,3(xn.l). Thus, if n > I and for all 1 < I < 3

gnjCn dn, f jn IJ(xn-1)] ST Su fn.l,j(Xnl) ; J - 1,2

(5)

- ST rH(dn) ST ST u fn-l,3(Xn-l) ; 3

i

I
I [ I I i I i i' -I i i -I :1 i " 1 I I I I I I I I I I Ii
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I By examining equations (4) and (5) It is clear that since S,

and Su are non negative constants, the return functions have the re-

quired monotonicity and equivalence properties. The sufficient con-

ditions for optimality in a Harkovian decision process have been met.

Recursive application of equation (11-18) will yield fni(Xn) that are

optimum.

Replacing the various parts of equation (11-18) by their equi-

valent expressions from equations (1), (3), and (4) and considering

equation (2) gives the following. If n - 1 and for all 1 < i < 3,

! x 1 6 SxI,

f l i (x1 ) - Max LP1 3 ST rH(dI)] (6)

0 . d I S_ x,

Asi-lning that rH(dn) is non decreasing in dn, this becomes

fli(xl) P i3 ST rH(xl) (7)

If we replace the various factors of equation (11-18) by their

equivalent expressions from equations (1), (3), and (5), and consider

equation (2), the following is obtained. If 2< n < N and for all

I < I <. 3, xn CSxnj n
2

fni(xn) Max - Pij ST Su fn-Ij(xn)0< dn< SX n  J

P P13 LST rH(dn) * ST Su fn-i,3(xn " dn)] (8)

II

4 "
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which can be written as

2
fnI(Xn) - ST Su Z, Pij fn-.IJ(xn)i-1

S T P13  Max tr,(d n ) n Su fn.1 ,3 (n - dn)] (9)
0 :_d n S x n

Equations (7) and (9) constitute the recursive relationships

that will yield maximum expected hits and the corresponding optimum

weapon allocation for the duel where target acquisition is considered.

The optimum salvo size is a function of weapons available, the Marko

state of the system, and the number of passes remaining. It will be

denoted dnl (xn)

A Simplifyinx Feature

When making calculations using equations (7) and (9), the

following observation is helpful. These equations depend on I only

because of Pjj. From the Markov state transition matrix, Figure 6,

P2j = P3J for all 1 < J < 3. Thus, equations (7) and (9) have the

following properties:

fn2(xn) - fn3(Xn) (10)

dn2 (xn) - dn3 (xn ) (11)

This fact allows considerable reduction in the amount of computation

required to evaluate equations (7) and (9). It also eliminates one-

third of the items of data that would otherwise have to be included

when tabulating the results.
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Note that while the foregoing observation Is a convenience, it -

does not allow reduction In the number of Markov states. States 2 and

3 must both be included because transition to state 2 involves no

weapon delivery while weapon delivery does accompany transition to

state 3.

Concavity

The concavity property that wiis proved in Chapter III for

equation (111-10) also holds for equation (9). In chapter III we

shoved that if r(dn) is concave in d. and fn.l(xn. 1 ) is concave in

Xn-l then the expression

Max [rH(dn ) # Su fn-l(Xn - dn)]0 < dn :S Xn

is concave in xn . Thus, If rH(d n ) and fnlj(x l) are concave in

d. and xn. 1 respectively, since ST > 0, S u  0 0, and PiJ • 0 for all I,J,

fni(xn) as determined by equation (9) is concave in x. for 1 <- i <- 3, j
2 < n < N. Further, It is clear from equation (7) that If rH(xl) is I
concave in xl, then ft(Xl) is concave in x, for all xc Sxl, 1 < I < 3.

Thus, by mathematical induction, fni(xn) is concave in xn for all

I < n < N, 1 < I < 3, xn( SXn. This property can be used to reduce the I
amount of calculation that is required because it means that any local

maximum that is found for equation (9) is also a global maximum.

Incorporating Multiple Modes of Attack

We will nov introduce into the model the notion that the pilot -

need not make every pass in exactly the same way. In addition to
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selecting the optiimm salvo size, he must specify other quant!ties

such as direction of approach, speed, dive angle, and pullout altitude.

The aggregation of values taken by these other quantities on a given

pass will be referred to as the "mode of attack."

Let the discrete variable, kn, be the mode of attack index at

pass n and let Skn indicate the set of all values that kn can take.

Thus at each pass, values for the two decision variables dn and kn

must be chosen. These decision variables are the elements of the de-

cision vector Dn - (dn, ku).

For the most Part, the modifications required to accommodate

mode of attack are minor. A number of the quantities in the model de-

pend on the value of kn. The survival probabilities become ST(k n ) and

Su(kn). The Markov state transition probabilities become Pij(kn).

The salvo effectiveness function becomes rH(d., k.) - rH(Dn), the

expected hits per salvo versus salvo size and mode of attack.

one nontrivial modification of the model is required. In the

duel with probabilistic acquisition, we dealt at each stage with a

functional equation of the form

3*

fni(xn) Max ( PiJ gni Lxn, dn, fn-l,J(xnl ) -] (12)
dn4E Sdn( n  -

The expression 3 in equation (12) represents the expected hits

for given n, i, xn, and dn . Since this expression represents the

expected hits for a given value of n, and since ST and Su art con-

stants, the probability of surviving the remaining n passes is at least

_____
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(ST Su)'n tor all dn CSdn(xn). In effect, the dn; (xn ) that satisfy

equation (12) maximize the expected hits subject to the constraint that

the expected attrition on the remaining n passes does not exceed

I - (ST s) n , i.e., not more than n passes are to be made and the prob-s T

ability of surviving each pass Is (S Su).

When multiple modes of attack are available at each pass, we

must deal with a funccional equation of the more general form

3

fni (XVn) - Max. Pjj(kn) grij [XA- Do ~n' IJX_)1(3
* DfE SnDnOt)L jul

Equation (13) is the same as the corresponding equation (11-18) except

for having recognized chat the Markov state transition probabilities

depend only an the kn component of Dn . Note that the residual state

vector X' now appears in place of the variable N which appeared in

* equation (12).

The expression in equation (13) represents the expected

hits for given n, I, X', and Dn . The approach at each stage vill be to

select D 1( ) so as to maximize the expected hits subject to a con-

straint on the expected attrition. Let an denote the constraining

probability of surviving the remaining n passes. A complete descrip-

tion of t.e state of the system at pass n nov requires knovledge of the

I

2 Note that ST and Su could depend on n and these cossents would "
still apply. The constraining value of the expectqd attrition for the 4.
remaining n passes would then be

n

1 - TT ST(ne) Su(n') , where nt is a dummy variable.

- - - -l 4
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value of the Markov state variable, 1, the number of weapons remaining,

xn, and the constraining probability of surviving the remaining n passes,
3

sn - The residual state vector is

X' (xn s) (14)

Now consider the various parts of equation (13) as they apply to

this model. The definitions of the Markov states are unchanged. The

Markov state transition probabilities are given by Figure 6 except

that all of the acquisition probabilities nov depend on kn .

The transition equations for the state variables are as follows.

For all 1 < n < N, 1 < I < 3

F ; J - 1,2

(15)

xn.l-x-d n  ; J - 3

- Sn < J < 3 (16)
n-l ST(kn) Su(kn) knSk (sn)

n

where s - 1.0. Equations (15) are the same as equation (1).

Equation. (16) can be rationalized as follows. 4  Let s n  be the actual

probab-.lit-y of surviving the remaining n passes. Thus, we require that

n> n ; n < N(17)

3Note that in equation (12), sn has a single value for given n,
i.e., it takes the value 1 - (ST Su ) n . Thus in equation (12), it is
not necossary to explicitly state the value of sn when defining the
state of the system for given n.

4 Equation (16) also follows from the expression of the proba-
bility of survival constraint, equation (A-7), that is given in
Append ix A.
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No if s o - 1.0 and n' is a dmmy variable,

nS

S- r ST(knh) Su(kne) ST(kn) Su(k n ) ^ l < n < N (18)I n-

So using equation (17),

a n  n ST(k n ) Su(kn (19)

or

-- (20)-
nl - ST(kn) Su(kn) n S(1

T,

By Inspection of equations (15) and (16) and considering the

non negativity of d., v. can define the following sets which have the

property that X-nfS, , dn ESd (Xn), Sns , and kneSk (s n ) for all

l<n<N. n n n n

S - (21) !

SS Sn: S; Sn <  (22) I

Sd n(xfl) {dn: d nE{00a1--- 9xn} (23)

Sk (sn) £ n ST(tn) su(kr) :a.kflSk}(4

s- - --

where xN > 0 and 0 < 3N < 1.0. The quantity 'N is the smallest value

of the constraining survival probability that is of interest. It

establishes the range of values of over which solutions viii be

obtained.
I!
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The return functions are entirely analogous to those for the

duel with probabilistic acquisition, equations (4) and (5). If n - I

and for all I < I < 3,

g91J [xl" 01 - foJ (X')] - 0 ; j - 1,2

- ST(kl) r (dl,k1) ; j - 3 (25)

If 2 < n <,N and for all 1 < I < 3,

gnj X.Dn.

- ST(kn) Su(kn) fn.l,j(xn-.lsn.1) ; J - 1,2

- ST(kn) rH(dnk n ) + ST(kn ) Su(kn ) fn.wJ(xn-lSnoi)

-; j- 3  (26)

Nov replacing the various parts of equAtion (11-18), or

equation (13), by Vheir equivalents from equations (15), (16), (23),

(24), (25), (26), and considering equations (21) and (22) gives the

functional equations for the duel with acquisition and multiple attack

modes. If n- 1, 1 < 1 <3,

fll(Xlsl)- Max 1- Pi3(kl) ST(kl) rH(dl, k1 )k I C- Sk I(Sl)

d, E SdIl(XI)

- Max [P1 3 (kl) ST(kl) rR(xl, kl)] (27)

Vl Ski~

since r,(dl, k1 ) is assumed to be a monotonically non decreasing

function of d i.

___

A-
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{t 2 <n nii, I<3
E(xn,8 ) mm JF Ptj(kn)ST(kn)Su,(kn)fn.l,j (xh9s(ens~t dn4ESd,(xn) (8

[sT~kflSrHkdfl.Icn)

VSince the first term of {* In equation (28) io Independent of t

we can w~rite

2
fni(xnsn) - M"x Zs(~3~~ £pij(k)fn..l,j (X.t k)ukF

(29)

0ST(k~n)P13(k~n) Max [rHdnlkn)+Su~knfn.,3 (x-dt
0 < d STcn)Su~kY)

The optimal values of the decision variables will be denoted dn~i(xnsn)

and kyA(Xn-sn).

tos(7) and (9), equations (27) and (29) have the following pro.

perties:

fn2(y.n-sn) - fn3(Kn,sn) (30)

dn2(xnsn) - dn*3(xn-an) (31)

kn2(xn.sn) -kn3(Xn-sn) (3?)

am
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Usinx a Discrete Attrition Constraint

Before considering an example of the application of equations

(27) and (29), a practical difficulty must be faced. The quantity sn

has been treated as a continuous variable. Also, ST(kn) and Su(kn)

can take any value from 0 to 1.0. Under these assumptions, the de-

velopment is rigorous.

In making numerical calculations, however, sn cannot be treated

as a continuous variable when fni(Xn,Sn) is tabulated. Accordingly,

the interval LSN, 1.0] will be divided into a discrete number, H, of

increments of size & s. At each stage, sn is treated as a discrete

variable taking only the values EN + mAs where m - 0,1,2,---,M.

This constitutes a modification of the definition of Ssn, equation (22).

The set S will now be def ned assn

n- Sn E ,sN' A * s, N 2 4s,---,sN + H S ; I < n < N

(33)

We must also modify the transformation equarion (16) because the

quotient sn/ST(kn)Su(kn) will not in gez-ral produce a value of Sn-l

such that Sn..ESSnl as defined by equation (33). Our approach is

to select the next larger acceptable value for Sn. 1 or symbolically,

/n

n.- l - < ST(kn)Su(kn) )_.A s ; 1< J <3 (34) 2--

As kn Sk (Sn)

where the symbol <X) means the largest integer value no greater

than X. The definition of Skn(sn), equation (24), still applies.

_ _
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To demonstrate that equation 34) will satisfy the survival

constraint, write equation (34) as

/ ST(kn)Su(klr) - n- (35)

Removing the largest Integer value restriction, equation (35) becomes

-Sn

ST(kn)Su(kn) > I sn-i (36)

As ~s

which becomes

Sn  (kn)Su(kn) Sn. I  (37)

or

Sn. I > (38)
-- ST(kn)Su (kn)

Thus, the sn I that is produced by equation (34) will always be at

least as great as the sn. 1 that is produced by equation (16).

It is well to note that by admitting only certain values of

Sn, we have a more restrictive optimization than woula result if s.

could be continuous. Thus, the maximum expected hits obtained from

the discrete case cannot be greater than the maximum expected hits

obtainable if s n could be treated as continuous. The amount of dis-

! I crepancy depends on the value of As. For a given problem, a

i.4
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sensitivity analysis would be desirable to determine the extent to

5
which the solution depends on the value of A s.

Numerical Example

To illustrate the application of equations (27) and (29),

suppose an aircraft has eight bombs and can make a maximum of three

passes at the target.

N w 3 passes

x N - 8 bombs

Suppose further that acquisition is probabilistic on each pass with

probabilities as shown in Table 3 and the corresponding matrix of

Markov state transition probabilities as shown in Figure 7 for all kn .

This transition matrix can be computed from the values In Table 3 and

by use of the Markov state transition probabilities in Figure 6.

5 1t is also possible to use an additive transformation relation-
ship for the attrition constraint if an, ST(kn), and Su(kn) are close
to 1.0. Suppose A(k1) = 1.0 - ST(kn) Su(kn). Then equation (16) can
be written 5 =

1 n [A(kn)]l Sn + Sn A(kn)I' I- A(k n )  sn io

if A(kn) is small. Further, if sn is close to 1.0,.

sn- I sn + A(kn)

which might be used in place of equation (34). Now if ST(kn) and Su(kn)
are allowed only to take values such that A(kn) - nas where n is a
positive integer and A s is as used in equation (33), then use of the
above additive survival constraint transformation avoids the truncation
error that is Introduced by equation (34). Where it is applicable,
this procedure may be preferable to the use of equation (34) because
the implications of rcstricting the values that the input parameters
can take are perhaps easier to understand than the implications of the
truncation that occurs in equation (34). This is especially true be-
cause the truncation error tends to be cumulative as successive trans-

formations are performed.

I
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~TABLE 3

EXAMPLE ACQUISITION PROBABILITIES

, P (Ao) -. 725

P (A0D) - .340

P (Al) - .915

P (AID) - .775

j-1 J-2 ju3

A* AD* AD

1 1: A* 0.275 0.385 0.340

1- 2: AD* 0 0.225 0.775

1- 3: AD 0 0.225 0.775

Fig. 7.--Example values of Markov state
transition probabilities.

tI

Let there be four modes of attack available on each pass where

variation in mode of attack does not affect the acquisition probabill-

ties but does have effect on both survival probabilities and salvo

effectiveness. Suppose ST(kn) - Su(kn ) for all modes and for all

I < n < N. The values of the survival probabilities are given In

Figure 8. It is also convenient to note the attrition per pass that

Is defined in the insert on Figure 8.
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Fig. 8.--Probability of survival and attrition per pass
versus mode of attack.
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II
Salvo effectiveness versus salvo size and mode of attack is

given in Figure 9. These curves were generated by use of equation

Chapter I1. Note that in Figure 9, 4' is held constant and different

salvo effectiveness functions are obtained by using different values

of 0.

As the mode of attack index (kn) increases from I to 4, the

survival probabilities get progressively higher while the salvo effec-

tiveness gets progressively lover. This type of situation might arise

if increasing values of kn correspond to increasing aircraft Rpeed.

Calculations for this example were made with EN - 8 and 7N -

0.976. Weapons are assumed to be allocated In groups of one. The

survival constraint was varied in increments of A s - 0.002.I
The principal results are tables of fn(XnSn), dn;(x.,Sn) , and

T*

kni(Xn Sn). The tables that ware generated for this example provide

the foregoing information for any number of weapons remaining up to

eight., for aity attrition constraint up to .024 and for any number of

passes remaining up to five. Tables 4, 5, and 6 are extract3 takenI

from these tables at n - 3. The complete tables are contained in an

unpublished computer printout that is currently in the possession of

the author.

For a given n, each of these tables has three variables. The

survival constraint is stated in terms of attrition (I - and- There

are two entries in each block of each table. The first entry applies

to Markov state I (target not yet acquired) and the second entry

applies to Markov states 2 and 3 (target acquisition has occurred).
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TABLE 4

MAXD f EKPECTED HITS: f 3 1 (x 3 1 s 3 )

Nwber of Weapons Reaiining (x 3 )

4 ., 8

.006 .226 .274 .301
.624 .687

.012 .562 .709 .850
' .694 .908 1.066

-4 ___

4j .018 .724 .929 1.093
.888 1.124 1.301

.024 .873 1.089 1.246

1.014 1.278 1.509

j TABLE 5

BEST SALVO SIZE: d3 1(x 3 ,s 3 )

Number of Weapons Remaining (x3 )

4 6 8

.006 4 6 8
4 6 8

Q .012 2 3 5
2 3 4

Il .018 2 2 3
2 3 3

.024 1 2 3
2 3 3
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TABLE 6

BEST MODE OF ATTACK: k3 1(x 3 ,s 3 )

Number of Weapons Remaining (x 3 )

4 6 8

.006 3 3 3
3 3 3

1.J

.012 4 4
I 3 3 3

.J18 4 4 4

1 2 3

.024 4 4 3

1 1 2

Examination of Table 4 shows that the maximum expected hits

increase with number of weapons available at a fixed attrition con-

straInt and it increases as the attrition constraint Is relaxed with

a fixed number of weaponr available. Also, the maximum expected hits

i greater when target acquisition has occurred (Markov states 2 and 3)

than when target acquisition has not yet occurred (Markov state 1).

All these trends agree with intuition.

Table 5 indicates the best salvo size as a function of the state

of the system. Note that these results indicate the number of weapons

to deliver if target acquisition and weapon delivecy occurs. If tar-

get acquisition and weapon delivt does not occur, no weapons are to

be delivered. From Table 5, the best salvo size increases as the

number of available weapons increases with a fixed constrain-, on th

iI



I

83

expected attrition and decreases as the zonstraint on the expected

attrition becomes less restrictive with a fixed numbei 3f weapons

available. These trends agree with intuition. j
By using the series of tables from which Tables 5 and 6 were

extracted, a complete policy for the duel can be construcLed. Such a
4

policy is shown in Figure 10 for the example of Tables 4, 5, and 6.

Figure 10 shows three columns of blocks. The left hand column

applies when N - 3 passes remain, the second column of blocks applies

when n - 2 passes remain and the third column of blocks applies when

n - 1 pass remains. Each block contains three entries n the left

which define a state of the system. The entries on the right in each I
block indicate the best action corresponding to the state that is tdi- I
cated by the entries on the left in the same block. The appearance of

the symbol A indicates that target acquisition has occurred and the

symbol A* indicates that target acquisition has not occurred. The

arrows comecting the blocks show the possible transitions from state

to stese.

/ Figure 10 shows the policy for the case where the comstraining

value of expected attrition ac the beginning of the duel is I - s3 -

O.42. When the first pass is made, acquisition has not yet occurred

and eight weapons are available. The policy is to make the first pass

in mode 4 and deliver five weapons if target acquisition and weapon

delivery occurs. If target acquisition falls to occur on the first

pass, then the system is in state A*, x2 - 8, and I - a 2 a ."a with

2 passes remaining; the best action is to use mode 4 with the intention

of delivering five weapons. If target acquisition occurs but no weaponx
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are delivered on the first pass, the system is in state A, x2 - 8, and

I 1 - S2 = .008 with two pases temaining; the beat action is to use

mode 4 with the intention of delivering five weapons. If target ac-

qulaition and weapon delivery occurs on the first pass, then the system

is in state A, X2 - 3, and 1 - s2 - .008 with two passes remaining; the

best action is to use mode 2 with the intention of delivering three I

weapons.

The followlng are so.me further coArments about the res'ilts of the

foregoing example. The dec-ease in best salvo size with less restric-

tive attrition constraint for fixed number of weapons available is an

interesting phenomenon. We might think of the less restrictive attri-

tion constraint as representing a less conservative attitude, i.e.,

more willing to take a chance. Now as our attitude becomes less con-

servative, we are less concerned about survival and more concerned about

maximum effectiveness. The most conservative thing to do is to deliver

all weapons on the first pass. As our attitude becomes less conserva-

tive, we depart further and further from this policy, i.e., the salvo

sizes at a given pass become smaller thus leaving more weapons for

future passes. As the attitude becomes less and less conservative,

there comes a point where we, in effect, ignore survival altogether

and simply maximize effectiveness. Relaxing the attrition cotstraint

beyond this point would have no further effect on the policy relating

to salvo size. Note that the d3l(x3 ,s3 ) values in Table 5 are begin-

ning to reflect this phenomenon since the optimum salvo site is nearly

the same at 1 - s3 - .018 and 1 - 83 - .024.
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As a further comment, we note in Table 6 what seems to be a

gmeral outcome that is illustrated by this example. The best mode of

attack is more conservative when acquisition has not yet occurred, i.e.,

the first entry In each block in Table 6 not less than the second entry

In the block. This reflects the fact that the acquisition probabilities

do not depend on mode of attack in this example while the survival prob-

ability and weapon effectiveness do depend on mode of attack. when

acquisition has not yet occurred, the tendency seems to be to use a

"safer" mode of attack and locate the target in order to save the air-

cratt for a less conservative attack on a subsequent pass when the

target has already been acquired. (nce acquisition has occurred, we

tend to use the more effective mode of attack.

Having developed a generalited EH duel and discussed some

example results, we will close this chapter by noting that as with

other duels the return-versus-attrition function is an important

characterizing feature cf the duel. Figure 11 shows this function for

the foregoing example. The data for this figure were taken from the

same table tlat the data tor Table 4 were taken from. Figure 11 as-

simes that acquisition has not yet occurred (Markov state I - 1),

eight weapons are available, and thr.o passes can be made. A particular

selected policy like that of Figure 10 applies to each of the points on

the return-versus-attrition function.
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CHAPTER V

A DUEL WITH A DIFFERENT OBJECTIVE

The PK Duel

Now consider an air-to-ground duel in which the objective is to

hit the target at least once. This type of situation might arise in

an attack on a small well fortified position requiring a direct hit.

A near miss is assumed to do no damage and one hit is assumed to be

adequate. In this discussion, the return will be referred to as

"probability of kill" and the cost is in terms of the number of air-

craft lost. This will be referred to as the "PK duel." The model to

be developed is quite similar to the model that was developed in

Chapters III and IV.

Let us first study a simple duel analogous to that of Chapter

III. In a simple PK duel where probability of kill is the objective,

the stage return, rK(dn), is the probability of kill versus salvo size.

The quantity fn(Xn) becomes the maximum probability of kill achievable

with n passes and xn weapons remaining.

The state variable transformation is given by equation (111-3).

The sets Sx and Sd (xn ) are defined by equations (II-4) and (111-5).
n n

The return functions for this case are somewhat different from

those of the model for deaLing with expected hits. When one pass re-

mains &Ad d, weapons are to be delivered, the probability of kill Is

the probability of reaching the point of delivcry times the probability

88
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that the salvo scores at least one hit. Left over weapons have no

i value. Thus, if n - 1,

glI , dl ,  - ST rK(dl) (1)

r When n passes are yet to be made, the composition of the maximum n-I

stage return, fn.l(xn.i), with the stage n return, rK(dn), can be

accomplished as follows.

Suppose d weapons are to be delivered on pass n and the re-~n
ma..ing xn - d n weapons are to be delivered on the remaining n-I passes.

I Target kill can occur only once and it can occur In one of two mutually

exclusive ays. The target can be killed on pass n, or target kill can

occur on one of the remaining n-I passes. Since pass n chronologically

precedes the remaining n-i passes, If the target is killed on pass n,

it cannot be killed on one of the n-i remaining passes. The probability

of target kill occurring on pass n is STrK(dn). The probability that

the target is not killed on pass n and that it is killed on one of the

remaining n-I passes is ST Sujl-r(dn)] fn.l(xn.l). Since these two

modes of target kill are mutually exclusive, we get the n stage probe-

bility of kill by adding the two terms. Thus for all 2 < n < N,

IV
gn 1Xn, dn' fn-l(xn-1 ) ]

" ST rK(dn) ST $u [1 - rK(dn)] fn~i(xn~i) (2)

By examining equation (1), we see that if rK(d I ) is defined for

all xlC Sx and dlCSd (xi), then the return function for n-I Is de-
1 1

fined for all xjE Sx, and dlESd (xl). Furthermore, when 2 < n < N,

we see from equation (2) that if rK(dn) is defined for all x
n
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and dnESd (xn)l then the return function meets the monotoniclty re-
n

quirement that is defined in Chapter II for a deterministic decision

process. The previous statement is true because ST, Su > 0 and since

rK(d n ) is a probability, then 1 - rK(dn) > 0. Thus, application of

the basic functional equation for a deterministic decision process,

equation (11-5), viii yield optimum values of tn(xn) for all I < n < N.

Substituting equations (1) and (2) above along with the appro-

priate transformations and set definitions, equations (111-3), (111-4)

and (111-5) into equation (11-5) we get the following recursive rela-

tions for the simple duel with probability of kill as an objective.

If n - 1, XlESXl ,

f l (xl) - Max LST rK(dl)] - ST rK(xl) (3)
0 < di <x 1

since rK(d n ) is assumed to be monotonically nondecreasing.

If 2 <n < N, xnES,

fn(xr4 T ST~ -Max xnrK(dn)+SuCI-rK(dn)]tynl(Xn..dn (4)

Nonrecurs ire Form

Let Rn(dndn.1,---,dl) denote the probability of kill obtainable

on passes n,---,l for the allocation (dnvdn.l,-..,dl). With one pass

remaining, we have

Rl(dl) - ST rK(dl) (5)

-~ ______- I

1I
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With two passes remaining, we have

R2 (d2 ,dl) - ST rK(d 2) + ST Su I rK(d2)] R1 (d1 )

- ST rK(d2) * ST2 Su [I - rK(d2)] rK(d) (6)

With three passes remaining, we have

R3 (d 3 ,d2 ,d1 ) - ST rK(d3) * ST su [. - rK(d )' R2 (d2 ,d1 )

- ST rK(d3) * ST 2 Su [1 - rK(d3)j rK(d2)

t S 3 S -i - rK(d3)1 Cl - rK(d2)] rK(d1)

(7)

We can now construct the expression for the N stage return for a given

Lr allocation, (dN~dN.l ,---,Id ).

I' N N

RN(dN,dN.1,--,d 1) ,- ST Z (ST Su) n'[-rK(dn) rK(dN. i.)
i,,i n-N-ti2

where for an arbitrary function of n, say g(n),

NTT g(n) 3 1.0 (9)

Considering the constraints, equations (II-1) and (ll-2), we can

state the optimization problem as follows.

N!

fN(xN)- Sax ST  (STSu) d ] )(N+l)
N---,dl j i- n.N- 1+2

(10)

.4
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subject to

N

dn  (II)
n-I

dn 0 1 < n < N (12)

Wi :Ing the problem in the form of equations (10), (11), and

(12) is perhaps helpful In understanding the origin of the recursive

equations. It also promotes an appreciation of the simplicity of the

recursive solution method. The development of nonrecursive problem

statements and the derivation of recursive relationships therefrom

are shown In Appendix A for some of thee more general problems that are

treated herein.

The Special Case where ' - 1.0

Equations (10), (11), and (12) are not very encouragin- rom

the sta rdpoint of classical optimization techniques, however, we can

gain one useful bit of insight by studying the recursive relations,

equations (3) and (4). We will show that if '+ - 1.0 and other con-

ditions are appropriate, all weapons should be delivered on the first

pass.

Suppose the stage return can be expressed as

rK(d n ) - 1 0 < 0 < I (13)

This is the same as equation (III-IF) with ' - 1.0. Then from

equation (3), when n - 1,

f 1 (X1 ) -ST (I- aXl) (14)

~ I
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We wilt now hypothesize that

tn l(ni1) ST (1 - Xl) S (1 - 5n ' d n )  
(13)

Then from equation (4)

4

f a n S O1. I.x -fn(Xn) " ST Max Tu (16)O< dn S Y

or

fn(xn) " ST Max l idn (l-STSu) - STSu O n  
(17)

0 < d <

Lot Q(xn-dn). Then we note that

Q(xn,d n  1)- Q(xn,dn) (1 - STSu)(e - 1 )dn (18)

V Since STSu S 1.0 and 0 < 1.0, the above difference is non negative.

It follows that dn* - x. and therefore substituting In equation (17)

gives

r (Xn) - ST Q(xnXn) " ST (1'6) (19)

Thus, when rK(dn) is given by equation (13), we have shown that ft(X 1 )
has the form of equation (19) and If fnt-(Xu.1) has the form of equa-

tion (19), then so does fn(xn); so by mathematical induction, for all
N,d - xn and fn(xn) has the form of equation (19).

The conclusion Is that In the PK duel, if r(dn) has the form
of equation (13), then all weapons should be delivered on the first

pass, I.e., take dN(XN) XN"
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Parametric Investigation

The parametric investigation is not as convenient for the PK

duet as it was for the EH duel of Chapter IIT. If we assume rK(dn)

can be expressed by the analytic form, equation (111-18), the PK duel

objective function, equation (10) becomes

rN
N(x,. )  ST Max (STSu)d ,-- Id i -l

N dn -dNIl

n-r 1#
n-N- 1,2J

(20)

From equation (20), the optimal allocation depends on the three quan-

titles Y , 0, and (ST!;u) for given values of xN and N. In the para-

metric Investigation of the EH duel, the optimal allocation depended

only on 0 and (STSu) for given XN and N and was irependent of the

value of T'.

Figure 3 illustrates the rK(d n ) function for 9- 1.0 and for

the various values of e that are used here. Since T!' is a multipli-

cative constant, the curves of Figure 3 can be made to apply for any

by simply changing the ordirt-i scale.

Tables 7 through 10 show the optimal allocation versus (STSu)

and e for various values of '' Table 10 reflects the result for

the special case where Y - 1.0. The entry in each block in these

tables Is the vector (d*,---,dl) where zeros are omitted. It is clear

in the K duel as it was in the EH duel that if n, > n 2 , then dn > dn2

because of the eiscounting structure and the fact that the functional

form of rK(d n ) is the sime ror all n.
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We see that with other factors held constant, increasing sur-

vival probability calls for more uniform distribution of weapons among

the passes. The same type of trend occurs when 0 or . decreases in

value with other factors held constant.

The difference between the EH duel results and the PK duel

results can be appreciated by comparing Table 10 with Table 2. Ignore

for the moment the different interpretation of r(dn) in the two models.

The nunerical inputs are the same for both of these sets of results.

With the same numerical input values, the EH duel and the PK duel can

have quite different optimal allocations.

Generalizing the Duel

A model for the PK duel with probabilistic acquisition and mul-

tiple modes of attack will now be developed. This model is similar to

the model for the analogous EN duel that was discussed in Chapter IV.

The salvo effectiveness function will be r,(Dn) - rK(dn,kn);

it will represent the probability of at least one hit as a function of

salvo size and mode of attack. The maximum n stage return will be

fni(Xn) - fni(xnSn); it will represent the maximum probability of at

least one hit when the system is in Markov state 1, n passes remain,

x n weapons remain, and the probability of surviving the remaining n

passes must be at least sn -

The following aspects of this model are identical to the cor-

responding aspects of the model for the EN duel with probabilistic

acquisition and multiple modes of attack that was developed in Chapter

IV. The Markov state definitions are the same as those given in

Chapter IV. The Markov state transition probabilities are given tit
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Fi'ure 6. The basic transformation equations for the residual state

variables are given by equations (IV-15) and (IV-16). The basic sets

Sxn S n  Sdn(xn) and Skn(sn) are defined by equations (IV-21) through

(IV-24). The required modification of the transformation equations and

the set definitions to account for the discrete nature of numerical

calculation related to sn are given by equations (IV-34) and (IV-33),

respectively.

The return functions for this model have the same form as those

for the simple PK duel but they must be modified to account for the

presence of multiple acquisition sta.tes and multiple modes of attack.

When one pass remains, weapon delivery is associated with tran-

sition to Markov state 3 and weapons are not delivered when transition

is to Markov states 1, or 2. The probabilitv of surviving to the point

of weapon release and the salvo effectiveness depend on the mode of

attack. Thus, if n - 1 and 1 < i < 3,

glii LXl, D i fo,j(Xo,)] (21)

a 0 j - 1,2

- ST(kl) rK(dl,kl) ; j - 3

When more than one pass remains, the foregoing statements still

apply. Furthermore, we can use the same argument that we used In re-

lation to the simple PK duel to justify an expression for the compo-

sition of the stage n return with the maximum return for the remaining

n-I stages.

If transition is to Markov state 3, weapon delivery is implied

and for given X4 and Dno the probability of target kill occurring on

-
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pass n is ST(kn) r(dnkn). The probability that the aircraft survives

pass n, fails to kill the target on pass n, and then kills the target

on one of the n-i remaining passes is given by

ST(kn) Su(kn) 11 - rK(dnkn)] fn-l,3(xn-lSn-I)

If transition is to Markov states I or 2, no weapons are delivered on

pass n and the probability that target kill occurs on pass n is zero.

The probability that the aircraft survives pass n and kills the target

on one of the remaining n-I passes is ST(k n ) Su(kn) fn-I,j(Xn.iSn-l)

where xn. and an.l are given by the appropriate transformation equa-

tions. We can sumarize the foregoing as follows. If 2 < n < N and
C

for all I < I< 3,

gnij (XXDnlfn-lJ(Xn-1)] ST(kn)Su(kn)fn-lJ(xn-lsn-1) ; j 1,2

n)rK(dnkn) n STu n ) [-rK(dnkn) ] fn-,3(xn-l-sn-)

(22)

If rK(dn,k n ) is defined for all XnESxn dnESd(Xn),

1 < n < N, then these return functions satisfy the sufficient condt-

tions for optimality as defined In Chapter II. This is trivially true

for equation (21). Equation (22) has the monotonicity property for

all n, 1, JX, and Dn in their respective sets because under all

cond It ions

ST(kn) Su(kn ) LI - rK(dnkn)] >0 (23)

Likewise, the equivalence condition is satisfied because gniJ ] is

a linear function of fn-l,j(xn.lsn-l).

4.
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The various parts are now available so the PK duel with proba-

billstic acquisition and multiple modes of attack can be optimized by

using the functional equation for a Markovian decision process, equa-

tion (11-18). Substituting values gives the following. In stating

these equations, we will ignore the practical problem that sn cannot

be treated as a contintous variable when making numerical calculations.

It will be understood that the appropriate modifications are used when

calculations are made.

If n - I and for all 1 < i < 3,

3
flt(xSl)- Max Pij(kl) ST(kl) rK(dl,kl)

0<dl<XI jal

klEISk (Sl)

PMax LP 13 (kl) ST(kl) rK(xl,kl)j (24)
klC Sk(SI)

if we assume that rK(dl,kl) Is a monotonically non decreasing fumction

of dI.

If 2 < n < N and for al I < I < 3,

f nl (xn 'sn) 0 Max < ZnJ Plj (kn)ST(kn)Su(kn) fn- I,J no, ST~ n ~ n -

knE Sk (xn)

+P13(k n) ST(kn)rK(dn'kn) + ST (k n)Su (k n ) Ll-rK(dn,l

n-,3 (n- no ST(kn)SU(kn))}(

:I

|I
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Equation (25) can be simplified to

fn(xS)- Max (kn ) E ptj (kn)fn.1,j (xn,s nun
kn g Skn (sn) Jt

i S(lkPl3 (kn ) Max [rK (dn knI+Su(kIc)l-rgdn,knl]0 °<dn <x n

fn-, (x.-d n))Jj (26)

Numerical Example

iI

The application of equations (24) and (26) will be illustrated *

by using a problem that is very nearly the same as the example problem

of Chapter IV. In this example, N - 3 and xN - 8. Acquisition is

probabilistic and is characterized by the values given In Table 3 and

Figure 7. The survival probabilities are given in Figure 8.

The salvo effectiveness function, rK(Dn), used for this problem

differs from the one used in the example of Chapter TV. First, Its

interpretation is different since rK(Dn ) is the probability of target

kill versus salvo size and mode of attack. Second, the functional form

of rK(Dn ) is the same as before, I.e., equation (III-18) and the values

of 0 for the four modes of attack are unchanged, but we now have

IV - 0.25. The values of Y and 0 and the resulting rK(dn,kn) func-

tions for the four modes of attack are shown in Figure 12.

Calculations were made with .N w 8 and iN = 0.976. Weapons are

assumed to be allocated in groups of one. The survival constraint was

I
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varied in increments of d1 s - 0.002. These values or* the same as

they were In thle example of Chapter IV.I1

Tables Its 12, and 13 show extracts from the principal tables

of results. These tables respectively show maximum probability of4

kill, beat salvo size, and best mode of attack versus number of

weapons remaining, attrition constraint, and Markov stare. Note that

here as before, the first entry in each block in Tables 11, 12, and 13

applies when the system is in Markov state 1 (target acquisition has

not yet occurred). The second entry in each block applies when the

system is in Markov state 2 or 3 (target acquisition has occurred). [
Figure 13 shows an illustrative optimum attack policy correp-

ponding to I - 83 - 0.012. This figure was constructed from data in

the sories of tables of results that Tables 11, 12, and 13 were ex-

tracted from. The optimum attack policy of Figure 13 happens to bf

identical to the optimum attack policy of Figure 10 which Applies to

the example of Chapter IV. Note, however, that not all the results

are the same tor the two examples as can be seen by comparing Tables

11, 12, and 13 of this chapter with Tables 4, 5, and 6 of Chapter IV.

The return-versus-attrition function for this example can be

read from the tables of results at n - 3, x3 - 8, and assuming the

system is in Markov state 1 (the target has not yet been acquired".

Some of these values appear In the appropriate positions in Table 11.

Figure 14 shows the resulting return-versus-attrition function 'or

*this example problem.

,.1
.. . . . .. . . . .
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TABLE I1

MAXIMUM PROBABILITY OF KILL: f 3 1 (x 3 ,s 3 )

Number of Weapons Reaalning: (x 3 )
4 68

.0O7 .068 .075
..006 .29 .156 .172

Qa.012 .138 .172 .202
.168 .216 .251

.018 .176 .219 .253
.211 .261 .298

.207 .252 .284.024

.238 .294 .334

TABLE 12

BEST SALVO SIZE: d3 1(x3,s3)

Number of Weapons Remaining: (x 3 )

4 6 8

.006 4 6 8
4 6 8

2 3 5
.012 3 4 5

.81 3 3
3 3 5

-4 -

0 1 3! .024
2 3 3

aI
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TABLE 13

BEST MODE OF ATTACK: k3 1(x 3 ,S 3 )

Nimber of Weapoi Ramaitnirg: (x3)

4 6 8
.063 3 3
.006K 3 3 3

4 4 4~~.012
2 3 3

U4 44
.018 1 2 2

2'44 4 3

I -

I
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Numerical Example: Reduced Salvo Effectiveness

for another example of the application of the P( duel model,

equations (24) and (26), an interesting outcome results if the salvo

effectiveness is made small while the acquisition and survival inputs

are maintained the same as they were in the previous example, i.e., as

in Figures 7 and 8. If the salvo effectiveness function, are as shown

in Figure 15, the optimum policy at N - 3 is Illustrated by the ex-

tracts shown ;.i Tables 14 and 15.

The interesting fiarure is that for all values of attrition

constraint greater than or equal to 0.0M2, zero weapons are delivered

on the first pass. Note also that the "safest" mode of attack is

employed, i.e., k 3 * 4

The complete attack policy for 1 .. s3 - 0.018 is diagrammed In

Figure 16. This policy says to make the first pass using the "safest"

mode with no intention of delivering weapons. The purpose of the first

pass is to acquire the target. Once target acquisition has occurr-ee,

the least conservative mode of attack, i.e., the most effective, is

employed and all weapons are delivered. If the target is not acquired

on the first pass, the process is repeated on the second pass.

I
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TABLE 14

BEST SALVO SIZE WITH REDUCED SALVO EFFECTIVENESS: d 3 1 (x 3 ,a 3 )

Number of Weapons Remining: (x3 )

4 6 8

4 6 8
.006 1 4 6 8

0 0 0
.012 4 6 8

0 0 0
4, .018 4 6 8

0 0 0"( .024 4 6 8

TABLE 15

BEST M(DE OF ATTACK WITH REDUCED SALVO EFFECTIVENESS:
k3 i (x3 ,s 3 )

Number of Weapcns Remaining: (x3 )

4 6 8

.063 3 3.006
3 3 3

4j

a 4 4 4. .012

43
.0248 4 4
.024

I
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CHAPTER VI

GENERALIZING THE ATTACKER'S OBJECTIVE

An ASpiration Level Duel: The Simple "PC Duel"

The PK duel that was discussed in Chapter V is a special case

of the duel that will be discussed next. It is possible that the

attacking aircraft would wish to maximize the probaliltv of obtaining

at least C hits. This will be referred to as the "Pc duel." The as-

piration level is C hits. The PK duel is a special case of the PC duel

where the aspiration l_'cl !s on hit.

First, consider a simple PC duel which does not include proba-

biltstic acquisition or multiple modes of attack. Let h(Q ; dn ) be

the probability function of the number of hits, . , per salvo of size

dn where .A is an integer such that 0 < < dn .

The state of the system when preparing to make pass n can be

described by specifying values for two state variables. The number of

weapons remaining is x n and since we are not for the moment including

probabilistic target acquisition, dn weapons are assumed to be de-

livered on pass n. The transformation of xn is given by equation (1).

For all I < n < N,

xn - xn - dn (I)

112
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Let I he the other state variable where I < I < 1. Let the number of
I

hits already achieved be !-I. Since the number of hits achieved on

pass n is a random variable with a probability function that depends

only on d., the transformation of I is probabilistic and we have a

Markovian decision process. The Harkov state transition probabilities

can be stated as follows. Reference to Figure 17 will be helpful in

following these relations. Note that I - C + I and for an arbitrary

b
function of i, say g(i), L g(i) 0, if b < a.

i-a

Pij(dn) - h(J-1; dn) I < I < I; i < J < I

dn

= L h( ;dn) ; 1< I < I; J - T-C- i+ I

-1.0 , i-i-i

= 0 ; 1< I <I < J < 1 (2)

The transformation relationship equation (1) and the non nega-

tivitv of dn lead to the familiar sets

*S,~ -n {Xn Xn E{91*-**.*XN} (3)

Sd (xn) d {d: d VD--9 (4)

The return functions are rather simple. If one pass remains to

be made, the probability of achieving at least C hits in the duel is

'We have set the state variable I equal to the number of hits
plus one because we wish to allow for zero hits without destroying the
convention that all Index values start at one. This convention makes
computer programming somewhat easier and lends consistency to the model.
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0.0 If transition is not to state I, is 1.0 If the system is already

in state I, and is equal to tho probability of surviving to the point

of weapon delivery, STO if the transition is to state I from some

other state. To summarize, if n - 1,

glil Lxldl,fo,j(xo)] - 0.0 ; i< I < I; 1 < J < I

a 1.0 1-

w ST ; < " I < I; J - (5)

'When more than one pass remains to be made and transition is to

some state other than I, the probabilltv of achieving at least C hits

in the duel is the probability of surviving pass n and achieving the

remaining hits in the remaining n-1 passes. If the system is already

in state I, the probability of achieving at least C hits in the duel

Is 1.0. If transition is to state I from some other state, the proba-

bilitv of achieving at least C hits in the duel is ST . To summar!ze,

if 2<n <N

gnij Ln,dnfnij (xn-i]

STSufn..lj(Xn. 1) ; 1 < I < I

-1.0 1 i-I
i ST < <i < I

; j.I (6)

SWe have now defined all of the parts of the basic functional

equation for the Markovian decision process, equation (11-18).

Substituting the expressions from equation (2) for the plj(dn) term,
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substituting the expressions from equations (5) and (6) for the

gn L"] term and using the sets defined by equations (3) and (4)

gives the following. If i - I and for all 1 < n < N

fnI(Xn) - 1.0 (7)

If n - I and 1 < I < I,

di

flI(x1 ) , Max ST T h(I;dl) (8)
0 < dl _ x, A-C-i+l

If 2 < n < N and I < I < I,

rC dn

fni(xn) - Max L h(J-i;dn)STSufn l,j(xn.l)*ST Z h(j;d
0< d <x J-i A-C-Iq.1

n n 1_

(9)

Since the return functions, equations (5) and (6) clearly

satisfy the monotonicity and equivalence conditions of Chapter II,

recursive application of equations (7), (8), and (9) will yield the

maximum n stage return and the optimum weapon delivery policy for the

simple PC duel.

Note that the optimum policy indicates the best act as a func-

tion of n, i, and xn . To implement this policy, the pilot must know

the number of hits already achieved. The implications of this will be

discussed later.

A Generalized PC Duel

In generalizing the model for the PC duel to include probabilis-

tic acquisition and multiple modes of attack, let h(tDn ) - h(R;dnkn)

I.
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he the probability function of the number of hits,j, achieved on

pass n when dn is the salvo size and mode of attack kn is selected.

The maximum n stage return, fni(XA) - fni(xnsn) is the maximum proba-

bility of achieving at least C hits in the duel when n passes are yet

to be made. xn weapons remain, the probability of surviving the remain-

Ing n passes must be at least sn, and the system is in Markov state i.

The Markov state must now reflect both the number of hits that

have already been achieved and the acquisition status of the svstem.

One possible approach would be the definition of a two dimensional

vector to characterize the Harkov state of e system. We will take

the approach, however, of defining Markov states in such a way that a

single dimension arkov-state variable can reflect both the number of

hits already achieved and the acquisition status of the system. The

functional equation (11-18) can then be used directly to optimize the

return. Te) accomplish this, the Markov states are as defined in

Table 16.

Figure 18 shows the transition probabilities for the case where

i C - 3. Using this figure as a guide, we can zonst.-uct the transition

probabilities for the general case. if i - 1,

pij(Un) - I - P(AO)

- P(A°) - P(A°D) ; j  2

0 3o < <j _C+l I

• - -P(AoD) h(J-C-2; D~n )  ;C+2 < <2C, I

dnP(AoD) 2: h(;Dn ) ; J3 I =2C (10)

--
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TABLE 16

DEFINITIONS OF MARKOV STATES IN THE GENERALIZED PC DUEL

State Variable Definition

I - I A* - Acquisition has not occurred

I - 2 AD*;O hits - Acquisition has occurred,

delivery did not occur an the

most recent pass, and no hits

have been scored

i - 3 AD*;1 hit - same as above with 1 hit scored

I -4 AD*;2 hits - same as above with 2 hits scored

i - C + I AD*;C-1 hits - same as above with C-I hits scored

I a C + 2 AD;O hits - Acquisition has occurred, delivery

occurred on the most recent pass,

and no hits have been achieved

I - C + 3 AD;1 hit - same as above with 1 hit scored

I + 4 AD;2 hits -same as above with 2 hits scored

i - 2C + 1 AD;C-1 hits - same as above with C-1 hits scored

I - I - 2C + 2 At least C hits have been achieved

i a,
lI--
L! !
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If 2 < I < cl,

pij(Dn) -0 ; 1 J < i; i < J " C+1

I - P(A1D) ; I-I

- P(AID) h(J-C-i, Dn) ; C.1 < j < 2C+l

dn

- P(A1D) E h( ;L n) ; j - I - 2C+2 (11)=c-i +2

If C+2 < i < 2C+e1,

Pij(D(Dn) ; I < j < 2C 1 (12)

If i - I - 2C+2,

P1 j(Dn) - 0 ; 1 < J i 2C+l

- 1.0 ; J - I - 2C.2 (13)

The residual state varieble transformation relations are as

follows. For all 1 < n < N and I < I < 2C+2,

Xn. - x ; 1 < J < C~l

-x n -n d n  ; C+2 < j< 2C+2 (14)

Sn
Sn- 1 - ST(kn)Su(kn) ; all j (15)

In the transformation equation (15) we are ignoring the problem that

in making computations, s. must take discrete values. The above

transformation equations lead to the sets defined by equations (IV-21),

(IV-22), (IV-23), and (IV-24).

__A
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In defining the return functions, we get some compensation for

the complexity of the transition probabilities. The return functions

are identical to equations (5) and (6) for the simple PC duel except

that xn is replaced by X - (Xnsn), dn is replaced by Dn - (dnkn)t

ST and Su are now ST(kn) and Su(kn), and I - 2C+2.

All the parts of the basic functional equation (11-18) have nov

been defined for the PC duel with acquisition and multiple modes of

attack.

The Simple Expected Damage Duel:

The Simple "ED Duel"

The aspiration level objective of the PC duel allows no utility

for any number of hits less than C and no marginal utility for addi-

tional hits once C hits have been obtained. This is a tenable abscrac-

tion for some situations where C - 1, i.e., the PK duel. When C > 1,

not very many applications come to mind. Almost any situation requiring

three hits offers some value for two hits. The PC duel is included

because It ?its logically Into the pattern of duels that are considered

and it makes a convenient way of introducing the duel that is to be

considered next.

j This leads to the final generalization of the duel objective.

The EH duel, the PK duel, and the PC duel are all special cases.

Suppose a utility or damage level is associated with the number of hits

scored. If the Markov state variable I reflects the number of hits

achieved, then a function U(i) can associate the damage level achieved

with the Markov state of the system. The damage level achieved on a

4l
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sortie is a random variable. Maximizing its expected value is a reason-

able objective. This will be referred to as maximizing expected damage.

The present case will be called the ED duel.

The functional equations for optimiing the simple ED duel can

be obtained by simple modilicatians of the equations for the simple

P duel that was discussed in the first part of this chapter.

C

In this development, fni(xn) is the maximum expected vaije of the

marginal (or additional) damage achievable in the remaining n .1asses

when xn weapons remain and the system is in Markov state I. The quan-

tity h(Q;dn ) is still the probahility function of the number of hits,

* per salvo of size dn where 0 < <d

The transformation relation for x. is given by equation (1).

The Markov state variable I has the same definition it did in the simple

PC duel (number of hits achieved - i - 1). The Markov state transition

probabilities aie given by equation (2) and Figure 17. The quantity C

is reinterpreted as the number of hits associated with the maximum

damage level, i.e., additional hits are of no further velue. The sets

S and Sdn(x,) are defined by equations (3) and (4).

In general terms, the composition of the stage n return with

the maximum return obtainable from the remaining n-I stages is the

discounted sum of the marginal damage achievable on pass n and the

additional damage achlevable on the remaining n-l passes starting from

the state that results from pass n. More specifically, if n - I and

1 < I < I (reference to Figure 17 may be helpful),

glij Lx, dl, foj(Xo)]

SsT uj) - u(i)] ; I < j 1 1 (16)

I
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If n- I and i - I,

glj [x1 , dl, to,j(xo)] 0 j - (17)

since damage level saturation has already been reached before making

th' pass.

If 2 < n < N and I < I < I,

Snij Lxn' dn' fn-I,J(Xn-1 )]

• sT Lu(j) - U(i)] STSufnlj(Xn1) ; I <_ J <I

- ST LU(I) - U(i)] ; J - 1 (18)

If 2 < n < N and i - I,

gnij LXn1 dn' fn-I,j(xn-I )] - 0 ; J - 1 (19)

Note that in equations (16), (17), (18), and (19), the return functions

are not defined for the cases where . 1 - 1. This is justified because

Pij(dn) - 0 if i < 1.

All of the required parts of equation (11-18) have now bear,

defined so the solution for the simple ED duel can be obtained.

The General Ea Duel

To include acquisition and multiple modes of attack in tha

ED duel, h(R; dn ) becomes h(j; Dn ) and fni(xn) becomes fni(X,

U(i) Is the damage level associated with. Markov state i. The Marko

states are defined in Table 16. The Markov state Trensition proba-

bilities are given by equations (10), (11), (12) and (13). The re-

sidual stat- variable transformations are given by equations (14) and

- -i-
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(15). Appropriate sets are defined in equations (IV-21). (IV-22),

(IV-23) and (IV-24).

The return functions for this case can be constructed as

follows. The quantity C must be interpreted as the number of hits

associated with the damage saturation level, i.e., achieving more than

C hits is no better thazi achieving C hits.

If one pass remains, the expected return for given X1, D1, i,

and J is simply the probability of surviving to the point of weapon

delivery times the difference in damage level associated with the

Markov states I and J. Thus, If n - 1 and for all 1 < I < 2C+2,

glJ [Xj, Dl. fo,J(Xo)] - ST(kl) U(j) - U(i)] ; 1 < J ! 2C.2

(20)

'When more than one pass remains, the expected return for given

Xn, Dn, I and j is the probability of surviving to the point of weapon

release on pass n times the difference in damage level associated w'th

the Markov states I and j plus the probability of surviving pass n

times the additional damage achievable an the remaining n - 1 passes.

Symbolically, if 2 < n < N and for all 1 <_ I < 2C 2,

gnij [X1, -1 , fn-lJ(Xn:l

ST(kn) LU(J)-U(i)] * ST (kn)Su(kn)fn-ij(Xn i) ;

I < J < 2C+2 (21)

Xhe case where U(J) < U(i) will occur among the array of com-

binations of I and J that are covered by equations (20) and (21).
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This case does not create a problem because the transition probabili-

ties, PIj(kn), associated with all such cases are sero. This can be

verified by examining Figure 18.

All of the parts of equation (11-18) have nov been defined so

the maximum expected damage and the optimum policy can be determined

for the general ED duel. The optimal policy tells the pilot how many

weapons to deliver and what mode of attack to adopt depending on the S

number of passes remining, the number of weapons remaining, the

acquisition status, and the number of hits that have been achieved.

The existence of real situations in which the pilot knows

exactly how many hits have been scored is debatable. Conversations

with experienced pilots indicate that the pilot generally does not

know how many hits have been scored but he is not completely ignorant

of the effectiveness of his passes. He may be able to watch the effect

during pullout or a fellow p!lot way make observations. Further, I -

whether or not the target can be observed, tihe pilot has some idea of q

whether he has made a good delivery. The ability of the piloL to esti-

mate salvo effectiveness is highly variable depending on the conditLI,

of the attack and the nature of the target.

In some cases it may be appropriate to act as if the number of

hits scorea ir current damage level at each stage is known. In such

cases, the previously discussed methods will yield optimal tactics.

Implications of Unobservable

Markov State Transitions

It is interesting to see what is involved under the assumption

that the pilot has no information at all about the effectiveness of his

~- -- -~ -i
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previous passes. The simple PC duel will serve as a vehicle for ex-

amining this matter.

When the Markov state transitions are unobservable, t e simple

PC duel becomes a Markov decision process with unobservable transi-

tions. Such a process was discussed in Chapter II. The probability

function for the Markov state of the system, rTn(l; IN, dN,---,dnel) ,

can be determined by recursive application of the relation

I
rrn(J;rrNdN,..-,dntl) - . i~flNdN,-dn,)Pj(dn) (22)

where the pij(dn) are given by equation (2).

The functional equation for this duel can be developed from equations

(8) and (9) for the simple PC duel by the same argument that was used

to develop equation (11-21) by starting with equation (11-18). We can

apply this argument as follows. Since the Markov state, I, of the

system is only known probabilistically at each stage, the maximum n

stage return is the maximum expected value where the expectation is

taken over the random variable I. Since this maximum n stage return

aepnds on the initial probability function, TrN, and it depends or the

decisions D1 ,---,D n+, it is denoted fn(Xi, TTN' "N'--,nd.. The

return function is IndicatEod by gnij LXn, Dn, fn-l(Xn'l, TNDN'', oDn)]

and la the prezent appli-tilon to the simple PC duel, the return func-

tions are similar to equ-tion, (5) and (6). if n - 1,

glij L):l',dIro(XoTiN,djj- d 1 )] " 0.0 ; < I < I; 1 < j < I

-1.0; i - I

ST I < I < 1; J 1 (23)
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It 2 < n < N,

Agnij Lxn'dn-fn-l(xn-1,TTN,dN,",9d n ) ]

, STSufn-I(Xn.l,TTNdN,--.-,dn) ; 1 < I < I; I < j < I

- 1,0 ; i-I

- ST ; 1 < I < 1; j - I (24)

Now, substituting the Markov state probability functions from equa-

tion (22), the Maricov state transition probabilities from equation (2),

and the return functions from equations (23) and (24) into equation

L (11-21) gives the following functiomil equations for the PC duel with

unobservable Markov state transitions.

If n ,

!J fl (xl,nrN~dN, ..d ) ,

I d
Max z Tr1(I;rN,dN,..,d2)ST E h(3I;d 1 )

0 < di < X 1  i-1 i,-C-1+1

(25)

If 2<n<N 

ffn(xnTN,dN,'--dnl) -

I
Max z rrn(i ;rrN dNs--- dn l)

0 <dn <x n  '-I

rC
L j .h ( j -i ; d n ) S T S u f n - ( l n -1 9 , t, d N , ---d n )]

i-i

dn n
+ ST ).- h(f;dn) (26)I-c- i,
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As indicated in Chapter IT, the high dimensionality seems to make

equations (25) And (26) impractical to implement.

The prospoective difficulty of implementing equations (25) and

(26) illustrates a far reaching difficulty in the study of military

duels and in studies of many other areas. The solution methods for

Harkovian decision processes that are discussed in this work and by

Howard (17), the solution methods for stochastic games discussed by

Charnes and Schroeder (11) and by Shapley (23), and other related

solutions all provide an optimal policy or strategy that Indicates how

to act as a function of the state of the system. This always pre-

supposes a perfect knowledge of the state of the system on the part

of the actor. The complications that we have faced in this section

I are indicative of the problems that arise when perfect knowledge of

the state of the system can not be assumed.

t -

I!
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CAPrER VII

MULTIPLE AIRCRAFT RAIDS i

General Considerations

Discussion in previous chapters has involved the duel between I
a single aircraft and a defended target. This duel has been charac-

terized by the return-versus-attrition function. Such functions were

computed in previous chapters for examples of the simple ER duel

(Figure 5), the general EH duel (Figure 11) and the general PK duel

(Figure 14). A return-versus-attrition function along with the state-

ment of optimal attt;k policy at each attrition level is Informative,

but Is generally not adequate for decision making. It offers no Indilca-

tion of which attrition level should be adopted. Ths purpose of this

chapter is to shed some light on the selection of an attrition level
f4

for the duel, i.e., selection of the aircraft's attack policy.

The return-versus-attrition function represents a tradeoff i
between effectiveness and cost. Our approach will be to minimize the

cost of achieving a given level of effectiveness. In this report,

cost is in terms of expected aircraft losses. The units of return

depend on the situation.

A raid is visualized as follows. A group of R aircraft departs

from its base and penetrates enemy area defenses to the vicinity of

the target. Each aircraft attacks the target according to a prede-

termined policy. When the attack Is cnmpleted, the aircraft penetrate

129
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enemy area defenses and return to their base. The I -. problems in-

clude specifying the raid size R and the attack p ... that each air-

craft will follow.

Using the EH Duel as a Basis

Obi ec tiveA

A raid model based on the expected value maximization of

Chapters III and IV would minimize the exp.?cted losses to achieve a

given expected value of the number of hits. This type of model would

be useful if the damage level or utility is a linear function of the

number of hits obtained.

Note that not all hits need be on the same object. An example

target where hits are not all on the same object is a dispersed supply
I!

depot consisting of many small supply caches defended by a common

defense system. If the aircraft were to attack a different supply

cache on each pass and if rH(dn ) is interpreted as the expected hits

per salvo, then fN(X)N would be the maximum expected hits per duel.

Note that rH(d n ) might also be Interpreted as the probability of kill-

Ing a supply cache v.rsus salvo size In which case tN(XN) would be the

maximum expected caches killed per duel.

The Return-Versus-Attricion Function

In considering the return-versus-attrition function that is

produced by the models of the previous chapters, the choice is among

a number of different attack policies which will be indexed I < m < M.

Each attack policy corresponds to one of the values of the constrain-

Ing probability of the aircraft surviving che duel, SN, where sNE Ss
NI
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The return for the generalized EH duel, fNl(xN,sN), is the maximum )
expected hits if we assume that at the beginning of the duel, target

acquisition has not yet occurred, i.e., I - 1. For notational con-

venience, we will denote this return as u,(m). The attrition factorw

will be symbolized in terms of the probability of surviving the duel.

Let S (m) be the probability of the aircraft surviving the duel when

policy m is selected.

Note that SD(m) Is the actual probability of surviving the

duel under the mth attack policy. This may differ from the corres-

ponding constraining value sN . Accordingly, the first task is to

modify the return-versus-attrition function to reflect actual proba-

bility of survival rather than constraining values. To accomplish

this, each of the M attack policies is evaluated to determine the re-

.-- ~ ~suitingb u nvalue osef SD(m). hiet Is convenient to perform this evaluation '

by using recursive techniques.

For the generalized EH duel, the optimal policy is given by

dn n(Xnsn ) and kni(Xnsn), to be abbrevlated d. and kn, respectively.

Let Oni(Xn'sn) be the actual probability of survival when n passes

remain, the system is in Markov state I, x n weapons remain, the con-

straining probability of survival is sn, and the corresponding optimal

f policy is followed. The actual probability of survival can be evaluated

r.cursively by using the following relationships.

If n- 1,

If n - , Dli(xl,s 1 ) ST(kl) Su(kl) (1)

If 2 < n < N,

3

SPij ST(k) Su( l,J (xn-ln(2)

n
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where xn. I is given by transformation 4uations (IV-15) and Sn.I is

given by the discrete version of the survival constraint transformation

equation (IV-34).

If the appropriate m is associated with each SN' then for given

N and xN NI(XN,sN) - SD(m). Note that at pass N, I.e., the first

pass, the system is always assumed to be In Markov state 1.

A Model for Minimir-ing Expected Losses

Suppose that the aircraft in the raid make stochastically inde-

pendent, statistically identical attacks against the target. Let SA

be the probability that a given aircraft survives the area defenses

from its base to the target and suppose that the probability of sur-

viving ares defenses is the same on the return from the target to the

base. The raid size required to realize CR expected hits is given by

R(m) CR (3)
u0 (m) SA

where CR expresses the desired level of accomplishment. 1 The proba-

bility that a given aircraft does not survive the raid is given by

Si 2
1 - sA2 . .

Thus, the expected value of the number of aircraft lost per raid is

given by

ER(m) Cp (I - SA2 SD(m)) (4)
uD (m) SA

fin making numerical calculations, R(m) should take the smallest
integer value no smaller than the value of the right side of equation
(3). This is important when that value is small, especially If it is
less than 1.0. We have ignored this here.

II
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The minimum expected value of the number of aircraft lost per raid Is

given by

2
LR K-SASD(m) 

SA I < m < uo(l) JJ

The minimizing value of m will be m* and R* - R(m*) will be the opti-

mum raid size.

Key assumptions of this raid model are as follows:

a. The same probability of surviving the area defenses applies

enroute from the base to the target and returning from the target to

the base.

b. The aircraft in the raid fly stochastically independent,

statistically identical sorties.

c. At least R* aircraft are available.

Assumption a. could easily be relaxed but doing so would only

add to the complexity of this work without adding substantially to its

content. To relax assumption a., we would simply distinguish between

the probability of surviving from the base to the target and the probe- I
bilitv of surviving the return flight. The effect on the equations In

the model would be minor and they could easily be A ilfled to reflect

the change.

Assumption b. is the most important one since it Is a principle

basis of the raid model. That assumption implies that all aircraft

duels are characterized by the same functions ST(kn), S (k ). r(d ,kn),

and Pij(kn)" As was pointed out in the first section of Chapter III,

the return functions are indexed according to stage, n, which means

*--.-I---- ---- -.- ---.--..- _____



134

that the foregoing functions could be stage dependent without violat-

ing assumption b. as long as each aircraft's duel is characterized by

the same set of functions. This is important because the survival

probability functions,ST(kn ) and Su(kn), generally do depend on n.

Conversations with combat pilots indicate that attrition on the first

pass is generally much lower than attrition on later passes because of

the surprise element. This dependence can be reflected by making the

functions ST(kn) and Su(kn) depend on n in the recursive calculations.

It is userul to be able to reflect this dependence without invalidating

the raid model.

The notion that all aircraft might make statistically identical

attacks is reinforced by the tollowing. When a group of aircraft

attack a target, the attack is often arranged so all the aircraft make

their first pass within a short period of time, i.e., each aircraft

gets the advantage of surprise on its first pass. If a second pass is

intended, then it seems reasonable to assume that the surprise element

is no longer present for any of the aircraft.

A situation in which the aircraft attacks can he assumed to be

stochastically independent and statistically identical arises in the

all-weather operation of newer weapon systems. Since these aircraft

are designed to make attacks under bad weather conditions, coordina-

tion of the attack is difficult and therefore in designing weapon

systems and planning attacks, it might be assumed that when multiple

aircraft are Involved in a raid, they operate independently.

Assumption c. is implied by the fact that raid size is selected

and the policy for the duel is determined without regard for the number

hi -_.
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of aircraft available. If the selected raid size, R*, exceeds the

number of aircraft available, the objective of the raid must be relaxed.

In a raid based on the EH duel, this can be accomplished by reducing

the value of CR.

Numerical Example i

The example of Chapter IV Illustrates the application of the

model for the E duel. Tables 5 and 6 Illustrate the dni(XnS n) and

nl( nSn), respectively, that resulted in that example and Figure 11

L shows the return-versus-attrition function with the attrition In terms

of attrition constraint. Figure 19 shows a duplicate of the return-

versus-attrition function from Figure 11 along with the modified func-

tion that results when equations (1) and (2) are used to determine the

actual attrition associated with each point.

Suppose a raid is to be planned so as to minimize the expected

losses incurred in realizing an expected value of the number of hits,

CR, equal to 10.0. Suppose SA - 0.995. Applying the raid model of

equation (5) to the u.(m) versus [I - SD(m) ] function shown in Figure

19, the expected value of the number of aircraft lost Is minimized by

choosing the minimum point on the ER(m) function shown in Figure 20.

The minimum point occurs at the expected attrition level 1 - SD(m) -

.0083. This corresponds to a constraining expected attrition value

of I - s N - 0.012. The optimum attack policy for this expected attri-

tion level is diagrammed in Figure 10 and was discussed in Chapter IV.

The optimal raid size given by equation (3) for this attrition level

is 11.8 aircraft. The expected losses per raid is LR - 0.215 aircraft.

Ii



136

Iv
Vb

V)

I-- Oft
I a:J r-

<- -- cn W
oF

I.- Lx C C%

w o -9

<) 0

0.0ZX

ID ) CID LC

- x

0C



137

Ic
N

ccr

0 -

0 C 0
W x

0 q E0)

(L -
OD(0'

z- -x

'urn) 0(d) 0

c,

_ 0

- ii 0

(00 U 0 3 0 ;SS -0 o -4!



138

Using the PK Duel as a Basls

The Return-Versus-Attrition Function

A raid model based an the PK duel can also be developed. In

the PK duel the quantity fNi(XNsN) represents the maximum probability

of achieving at least one hit g~vnt that the aircraft survives the

area defenses from the base to the target. That probability will be

represented here by K0 (m). The modified return-ver~us-attrition func-

tion for this situation relates KD(M) to the probabilicv of not sur-

viving the duel, 1 - SO(m).

A Model for Minimizing Expected Losses

Supposo raid size, R*, and attack policy, m*, are tc be

selected so as to minimize the expected losses incurred in achieving

a probability KR of getting at least one hit during the raid.

If R(m) aircraft make stochastically independent, statistically

identical attacks using policy m, the probability that none of the

aircraft gets a hit is

(1 - SA KD(m))R (m ) - I - KR (6)

The raid size required to realize KR Is therefore
2

In(l - KR)

ln(l - SA KD(m))

2 1n making numerical calculations, R(m) should take the small-
est integer value bio smaller than the value of the right side of
equation (7). This is important when that value is small, especially

if it is less than 1.0. We have Ignored this here.

____1
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Since the probability of a given aircraft not surviving is given by

-A
2

I1. SA SD(m)

the expected value of the number of aircraft lost per raid is

ER(m) = li - SA' sD(m)] R(m)

SAln(l - KR) (8)
ln( - S A KD(m)) 8

Thus, the minimum expected 7osses per raid is

L K).4f~l~ 1 - SA2 SD(m) i~L - ln(l - R) Mtn - S4 K1)(m) (9)

It might be assumed that if the kill is not achieved on cme

raid, another raid -ill have to be tmdertaken and that raids will be

repeated until the job is finally done. Suppose all the raids are to

be stochastically identical and let target kill occur on the ith raid.

Then the expected value of the number of aircraft lost in killing the

target is

ET(m) Z ER(m) I KR(I - KR)

ER(m) KR 1 ( - K (10)Iwo R KR

Thus, the minimum expected losses to kill the target Is

11 LLr . Mtn E(m) - (11)
KR I < m< M R

I

- i : 11 | m : 1 . -m .€ j •
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So, under these assumptions, the raid size and attack policy th&t

minimizes expected losses per raid also minimizes expected losses in-

curred in finally killing the target.

Key assmptions for this raid can be summarized as follows:
I

a. The same probability of surviving the area defenses ap- I
plies enroute from the base to the target and returning from the

target to the base.

b. The aircraft in the raid make stochastically indepedent,7

statistically identical attacks.

C. At least R* aircraft are available,

d. Statistically identical raids are repeated until the tar-

get is killed at which time the raids cease. This assumption only

applies when computing Lr.

Assumptions a. and b. are the same as the first two assumptions

listed in the previous section and the same coents apply. Regarding

assumption c., if the selected raid size exceeds the nmaber of air-

craft available, the value of KR must be reduced.

Numerical 1 cample

The example of Chapter V Illustrates the application of the

recursive equations for the PK duol and results in the return-versus-

attrition function that is given in Figure 14. Figure 21 shows that

same return-versus-atWrtion function along with the corresponding

modified function that is obtained by using equations (1) and (2).

This modified return-versus-attrition function indicates the maximAU

probability ef killing the target versus the actual probability of

I. _
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the aircraft surviving the duel. Recall from Chapter V that this

function applies when three passes and eight weapons are available

and target acquisition has not yet occurred.

Suppose a raid Is to be planned so as to minimize the expected

losses incurred in realizing a probability of KR - 0.9 of getting at

least one hit. Suppose SA - 0.995. Application of the raid model of

equation (9) to the KD(m) versus [I - SD(m)] function plotted In

Figure 21 is illustrated in Figure 22. The minimum loss point occurs

at the attrition level I - SD(m) - 0.0083 which corresponds to an

attrition constraint value of I - s N - 0.012. The optimal raid site

given by equation (7) for this attrition level is 10.3 aircraft. The

minimum expected losses per raid is LR - 0.187. The optimum attack

policy for this attrition level is diagrammed in Figure 13.

Multiple Target Raids

The raid model to be developed next visualizes an operational

planner who has a given number of identical aircraft available to be

dispatched simultaneously on air-to-ground attack sorties. He has

available an array of targets that are of varying difficulty and value.

The planner must decide how many sorties to allocate to each target,

and he must designate an attack policy to be used for each of the

raids. He must deal with a tradeoff between total utility achieved

and expected losses. It is our intention here to use the individua!

duel results as a basis for studying this problem.

First, consider a generalized raid model that is based on the

EH duel. Suppose there are T targets available indexed t 1,---,T.
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To a large extent, the symbols used here are simply the symbols used

for the single target raid model with the subscript t added. Thus,

uLt(.t) and Sot(mt), respectively, are the expected hits and the

probability of aircraft survival per duel with target t when the air-

craft uses attack policy mt; SAt is the probability of surviving the

area defenses one way enroute to or returning from target t; Rt is

the size of the raid on target t (number of aircraft); ERt(mt) Is the

expected losses per raid an target t when policy mt is used.

The expected hits on target t when the aircraft use attack

policy at is

CRt( t) - Rt SAt uDt(mt) (12)

Let UtLZ] he an arbitrary function

0 < Ut Cz] < 1.0 (13)

which represents the utility of Z expectad hits on target t. Assume

the utilities of hits on various targets are additive, and let Xt be

T
the relative importance of the targets where Xt > 0 and j; X t " 1.

tul
Then for a given allocation (Rl,---,RT) and set of policies (ml,---,mT),

the utility of all raids is

T T
UT " Xt U t LCRt(mt)] "  t Ut CRtSAtuDtmt) ]  (14)

t-l t-1

We will suppose that the planner decidca to select (ml,---,mT) and

(RI,---,RT) so as to maximize the total utility subject to constraints

on the total expected losses, ERT and the total number of aircraft, Rr"

ontettlepctdlsePT
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This can be stated symbolically as -

T "
Maximize - X.t Ut LRt SAt uDt(mt)] (15)

tol

subject to

T

Rt R (16)

T T -

£ E (m )- Rt LI- 2 t j R
t R t Rt  -At SDt(mt)] 'RT (17)t-I t-l1

Rt > o 1 < t< T (18)

The solution to this problem might be used to present the operational

planner with a plot of UT versus ERT. Corresponding to each point on

this curve is an optimal set of attack policies, (ml*,. -,mT*) and an

optimal aircraft allocation (RI ,---,RT ). It would be up to the j

operational planner to decide which point on the curve constitutes the

most desirable operating point.

Note that there is an alternative to the foregoing procedure. I

It might also seem reasonable to minimize the total expected losses,

ERT, subject to a cmstraint on the number of aircraft available, ' ,
fa

and a requirement on :he total utility. This procedure would not
g ' I

necessarily utilize aircraft if the required total utility is set

"low" and there may be no feasible solution if the required total

utility is set "high." For these reasons, the previous procedure is

selected for development.

"1
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The problem stated in equations (15) through (18) can be solved

by recursive analysis. It will be treated as a T stage problem with

stages I < t < T. The symbol R t will represent the numbe: of aircraft

allotted to targets l,---,t. The symbol ERt will represent t e ex-

pected losses in attacking targets 1,-,t. The s' vector will be

X W (Rt' Er ) and the decision vector will be Dt t. The

function f (X ) will be the maximum utility achievab . attacks on

targets 1,---,t when Xt is the state of the system at stage t.

The transformation equations are

Rt-1 M Rt Rt (19)

ER,t-- ERt "ER (20)

Appropriate sets can be defined

S Rt: 0 < Rt <-  (21)

S 01t) { Rt: 0 < Rt < (22)

F )
S_ - " Rt: 0 <Rt <RT (23)
ERt

Smt(ERtRt) " {mt: Rt LI - $2 SDr(mtT] . (24)

where Rt, Rt, and mt are integers, ERt takes only selected discrete
values, and RT is an arbitrary limiting value. Note that SRt(R)

depends on Rt and Smt (ERT,Rt) depends on ERt and Rt. Equation (24)

I.
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says that a mode of attack for target t is chosen from among all modes

for which the expected losses in attacking target t is not greater

than the expected loss6s allowed for attacking all of the targets

The return functions are q! 4

g1 (X1,D1 ) - ki U1 LR1 SA, UDl(,.)] t - 1 (25)

and

gt LxtDtft-l(xt-l) Xt Ut LRtSAtUDt(mt)] t-(Xt-1 ) ;

2 < t < T (26)

So the functional equations can now be written

fi(XI) - Max A.1 Ul [RI SAI uDI(ml)] ; t " I

I$lRl '
R1I $" 1 (gR 1 ) (27)

If we make the assumption that Ut [Z] is a non decreasing function of

Z, then

fl(x1 ) " 1 Max U {u I A1 l(ml)]} t )

II (23)

and

ft(xt) - Max Xt Ut tRt SAt s uDt(m)] +t ,(xt-Rt le SRt (Rt. :

Smt(E--RRt) ; 2 < t < T (29)mteS E tV)

Equations (28) and (29) can be applied recursively to solve the prob-

lem stated in equations (15) through (18).

.-
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A multiple target model based on the PK duel can be developed

in a manner similar to the foregoing except that where the foregoing

deals with expected hits, we now are interested in probability of

kill. Thus, analogous to equation (12), we now express the proba-

bility of killing target t wilt" a raid of Rt aircraft each using

policy mt.

KRt(mt) - Ei - SAt Kot(mt)]Rt  (30)

The quantity K1Ct(mt) is the probability of killing target t per duel

when policy m t is used. Where the utility function Ut LCRt(mt)] or

Ut LRt SAt UDt(mt)] appear in equations (14), (15), and (25) through

(29), it is replaced by U- LKRt(mt].

It would be a simple extension of these models to develop a

mixed generalited raid model where some of the target attacks would

be describable as E duels whi!e other target attacks would be

describable as duels. It would be necessary only to use the

appropriate Ut C ] or C~ [ ] for each target in eqv.,tions (28)

and (29).

Special constraints such as minimum required Rt or SDt(m t ) for

various targets can easily be included by simply revisig the sets

appropriately.

Multiple Aircraft Raid Model Based on the E. Duel

A reasonable extension of the work that is discussed in this

chapter would involve using the ED duel that was developed in Chapter

VI as a basis for a multiple aircraft, single target raid model.

it
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Such a model is conceivable but it would be considerably more complex

than the raid models that are discussed in this chapter.

In the EH duel, the return is in terms of the expected value of

the number of hits which implies that the aircraft's utility for the

duel is linearly proportional to the number of hits. Accordingly, the

I~~optimum policy for a given duel is that policy which maximizes the !

expected hits subject to suitable constraints. Once having determined jI
the optimum policy for a single duel, we can make the assumption that

all aircraft make stochastically independent, statistically identical

attacks so that the return from the raid is directly proportioned to

the raid size. Thus, we have a simple way of determining the raid

size required for a given level of return. The foregoing is the basis

of the 9 duel raid model.

In the PK duel, the return Is the probability of at least one

hit. The optimum policy for each aircraft in A raid is the policy

that maximizes the aircraft's probability of getting at least one hit

i subject to suitable constraints. Cnce this policy is determined, we

can find a simple relationship between return and raid size, R. If

all of the aircraft make stochastically independent, statistically

identical attacks, then the probability of the targeL not being hit at

least once is the quantity one minus the probability of at least one

hit per aircraft raised to the power R. This provides a simple means

of determining the number of aircraft required to achieve a given re-

turn and thus we have the basis of the PK duel raid model. "

No such simple relationships as those discussed above seem to

exist for the ED duel. Since the return may be a nonlinear function
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of the number of hits, it Is not generally appropriate to maximize

the expected value of the number of hits for an ED duel. The opti-

mum policy must reflect the nonlinear character of the utility as aIfunction of the number of hits. Because of the nonlinearity of the

utility function, the return associated with hits made by a given

aircraft depends on the number of hits made by the other aircraft in

the raid.
t

To see this, suppose two aircraft are to make successive at-

tacks on a target such that the first aircraft completes all of its

passes before the second aircraft begins its attack. The character

of the utility function that governs the second aircraft's attack

depends on the outcome of the first aircraft's attack, i.e., the point

at which the second aircraft "enters" the overall utility function

depends on the number of hits achieved by the first aircraft. This

effect !s still present but in a more complex way when the two aircraft

alternate in making their passes and also when there are more than two

aircraft. Because of this inherent interaction among the ED duels,

there is apparently no rigorous way to develop the optimum policy for

a single ED duel and then use this policy in dealing with multiple

aircraft raids.

I



CHAPTER VIII

USER UNCERTAINTY

r General

The discussion in previous chapters and In much of operations

research centers is on finding the optimum. Since we have now de-

veloped maximizing techniques for at least some air-to-ground attack

situations, some degree of satisfaction should have been attained.

There is, Indeed, some satisfaction In contemplating a maximizing

solution but as is often the case, overcoming one obstacle only re-

veals the greater challenges that lie beyond.

The techniques that have been discussed lead to solutions that

are valid for a specific set of Input values. Figure 23 summarizes

these Inputs as they apply to the single target raid models and Indl-r

cates the outputs that result.

In making actual decisions, there is invariably some degree of

uncertainty associated with the values of Input parameters. A solu-

tion that applies for only one set e1 input values may be useful as a

reference for judging the effect of other Input values or might be

applied directly if one is willing to Ignore uncertainty. In general,

however, a systematic, quantitative approach is desirable to make the

most rational decision based on the best available information.

I!
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The Effects of Uncertainty

The approach to be followed in dealing with uncercaintv is de- 3
signed to answer the question: What will happen if the input param-

eters take values other than the ones upon which the optimization is

based? I_
To answer this question it is first necessary to characterize 4

the available information about the values that the input parameters

might take. The specification of intervals of possible parameter

variation is one means of reflecting the available information about

these parameters. No indication is to be included as to how the input

parameter values might vary within their respective intervals. Accord-

Inglv, this will be referred to as constrained uncertainty.

Let W be a vector whose components consist of the system inputs. -

Let the most optimistic values and the most pessimistic values of the

input parameters be represented by the vectors Wo and W , respectivelv.

Now define a such that

W I-a) Wp V C Wo  0 < a < I )

Thus, W is a convex combination of the vectors W P and Wo. As the value

of L varies from 0 to 1, all of the input parameters vary in unison

from their most pessimistic value to their most optimistic value.

It is also possible to apply the foregoing technique to Indi-

vidual Input DarAmeters. Suppose the components of W, Wo, Wp are

wj, Woj, wpj, respectively, where I < J < J. Then a set of a 1 values

might be defined such that
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wj - ( 01- j) wpv, a.woj; 0- aj <I; < J J (2)

When L1  - - Cj, then equation (2) is equivalent to equation

(1). As the individual aj's are varied independently over their pos-

sible combinations of values, the corresponding Input parameters vary

over their possible combinations of values.

This method offers the following features which combine to pro-

vide a systematic practical way of studying the implications of un-

certainty;

1. It tends to place all input variables on a common scale

with respect to their range of uncertainty.

2. It polarizes the inputs with respect to their optimistic

and pessimistic directions of variation, i.e., for any input parameter,

increasing the corresponding CLj results in the parameter takinv a more

optimistic value.

3. It allows expression of basic inputs in non probabilistic

terms.

if the method is to be practical, the results must be compre-

hendable to the decision maker. This consideration provides a stronz

argument for emphasizing the use of equation (1), i.e., varying the

input parameter values in unison. By doing this, the extremes of

system performance are included, some indication of oerformance at

non-extreme input values is obtained, and the results can be expressed

in relatively simple form. Accordingly, the balance of the discussion

is concerned with the use of equation (I).

I2

I
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A Basis for Tactics Selection

Suppose that having specified wo and Wp, the tactic that

optimizes system performance is chosen based on the input parameter

val ues

W- (1- a') Wp ci' Uo  (3)

It would be possible to determine a limiting envelope of system per-

formance by letting a' vary from 0 to 1.0 and optimizing system per-

formance for each different value of a'. As the value of a' varies,

the optimizing tactic changes. Unfortunately, only one tactic can be

used in a given situation. Of all the tactics that are forthcoming,

as a' varies from 0 to 1.0, there is presumably one that is at least

as desirable as any other. Corresponding to this tactic is at least

one value of a'. Actually, there is generally a range of values of

ai' corresponding to each tactic because ca' is a continuous variable

and changes of optimum tactics occur in a discrete manner provided

only pure tactics are allowed._

To judge the desirability of the tactic corresponding ro a

given value of Vi', we will examine what would happen if the input

parameter values that are actually realized differ from the values

W' corresponding to '. The mechanism for accomplishing this is to

associate the realized values of input parameters with the control

parameter a according to equation (1).

IMixed tactics are conceivable here in the same sense that

mixed strategies occur in game theory. Only pure tactics are
considered.

IL=
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Let F(a;L') represent a measure of system performance as a

function of the realized input values a when tactics optimization is

based on the nominal input values corresponding to a'. A plot of

F(Na;m') versus a for given cx' might be considered as a profIle of the

performance that results from adopting the tactic corresponding to Cx'.

To Illustrate the application of the foregoing technique,

suppose F(c;c') represents the cost of doing a fixed job in -s given

situation. The analysis might result In the performance profiles that

appear in Figure 24 for three different values of a'. If c' - 0.1,

curve a represents the profile of system performance as the input

parameters vary in unison through their range. Curves b and c give

similar information for a' - 0.5 and a' - 0.9, respectively. This

display presents to the decision maker a highly digested summnary of

the implications of uncertainty and his options to control the outcome.

We can analyze Figure 24 in terms of the principles of choice

und,r uncertainty (19). The minimax principle leads to selecting the

ax' that minimizes the cost when ax - 0, Assuming that all of the a

values are equally likely and selecting the a' that gives minimum

expected cost is an application of the principle of insufficient

reason. Minimizing the maximtm difference between the selected curve

and the limiting performance envelope, F(OL;a) is an application of

Savage's principle of minimax regret. Finally, the display Itself is

in keeping with the Hurwicz pessimism-optimism principle.

In the air-to-ground attack problem and undoubtedly in many

other problems, the system performance, F(ci;al) is not a scalar quan-

tity but must be considered as a vector. For a given ax, botn return
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and cost vary as a varies. This Is unfortunate because It complicates

the task of the decision maker in assimilating the results, but It in

no way changes the basic Idea. Techniques foe displaying and Inter-

preting results when F(ci;ci) Is two dimensional will be d iscussed in

relation to the numerical examples.

C)I

U C:Cj 0.

b~a'=0I
C: a 0.

0 0.10.5 09 1.aI
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f Treating Uncertainty in the EH Duel Raid Model

Consider now the EH duel of Chapter IV and the correspondingt.
raid model of Chapter VII. The system performance which has been

represented by F(a;a') is characterized by two output quantities.

Let LR,(a;a') be the expected losses per raid and let CR(CL;a') be the

j expected hits per raid. These two functions must be evaluated for

various values of a'. In this discussion a is associated with realized

input values and a' is associated with nominal input values where the

tactics optimization is based on the nominal input values.

The number of aircraft per raid Is given by equation (VII-3)

which becomes

R(a'l) - CR (4)UD(CL';CL') sA(C")

where ut(a;a') is expected hits per duel as a function of ca for given

a'; SA(Ca) is the probabilltv of surviving area defenses one way as a

function of a. Equation (4) simply makes explicit the fact that the

raid size is determined entirely from nominal values and is indepen-

dent of a.

The expected losses realized per raid is given by

LR(a;a') - R(a') - S2(a) S(a;')j (5)

where SD(m;a.') is the probability of the aircraft surviving the duel

as a function of a for given a'. The expected hits realized per raid

is given by

CR(c;a')- R(a') SA(a) tD(a;a.) (6)

Ig
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In evaluating equations (5) and (6) as a function of a, the

quantity SA(a) is an independent Input parameter whose value ranges .

from a pessimistic limit to an optimistic limit in accordance with

the value of a. All other input parameter values are also controlled

bya and their effect is reflected by the values of u,(o;a') and

SD(c(;'), the expected hits per duel and the aircraft survival proba-

bility per duel, respectively.

The functional equations (IV-27) and (IV-29) for the EH duel

can be adapted to evaluate uD(C;Cz'). Lot dni(Xn,Sn;CL') and

kni(xn,sn;L') be the maximizing attack policy associated with al'. In

L the following equations, these will be abbreviated dn and kn respec-

tively. From equation (IV-27), if n - I and I < I < 3,

fli(Xlsls;a') P1 3 (kl, a) ST(kl, a) rH(xl,kj, a) (7)

and from equation (IV-29), if 2 < n < N and I < I < 3,

2
"?ni(xnsn,OL;a') - ST(kn,Ca) S.(k,_) Z Pj (kA,a)

fn.l,j(XnSn.l, a;a') + ST(kn, a) P 3 n. a) (8)

LrH(dA, kn , a) + Su(k n, a) fn-l,3(xnodAs,

I I
where pi (kl ,a), ST(kn, a), rH(xnkn, a), and Su(k, ) correspond to

22li Pij(kn), ST(kn), rH(xn,kn), and Su(kn) except that they depend on a.

2 The """ is used to distinguish the function fnt(xnsna;')
from the function fni(xn,sn) that has appeared previously. Note that
these functions are identical only if a - at'.
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Since the duel starts with n - N, i - 1, xn - XN, and sn - SN,

the expected hits per duel as a function of ct for given c(' is given

by

uD(L;a') fN,(xN, sN , OL;' ) (9)

In all calculations, Sn.l is related to sn by the transforma-

tion relation (IV°34) which accounts for the discrete nature of the

calculations. Note that the survival probabilities to be used in

equation (IV-34) are ST(k, (i') and Su(kA, a'). This is because when

the pilot carries out a policy, his actions are based on his nominal

survival probabilities, not on the actual survival probabilities since

he doesn't know the actual values.

To evaluate SD(a;ci') we use the same method that was used in

Chapter VII to evaluate the actual survival probabIlity. From equa-

tions (VII-l) and (VII-2), if n - 1,

Oli(X1 , si , a;Cr') - ST(kj, a) Su(ki, ai) (10)

and if 2 <n < N

JDni(xn, sn' a;c') - (11)

3
z P ij (d n' ) ST (kA ,() $u (kq ,a ) O)n -l,J( Yn -I 9,n -I, -;L #)

J-1

Finally,

sD(c;a' - 0
1 (xw, sN a;m') (12)

IO

[
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Treating Uncertainty in the PK Duel Raid ModelIi
Turning now to the PK duel of Chapter V, the system performance

can be characterized by the expected losses per raid and the proba-

bility of killing the target per raid. These quantities will be repro-

sented by LR(a;a') a"d KR(a;l' t ), respectively.

The optime.' rold size based on the nominal input values is given

by the following a tion of equation (V-1-7)

R (&) - ln((14e) (13)
In [l-sA(a') N(c';a')]

where KD(a;c') is the probability of kill per duel as a function of a,

for given a.'. The probability of killing the target per raid as a func-

tion of a for given a is given by

KR(a;al') - 1 - A- S(a) KD(a;a')]R(a ') (14)

and the expected losses per raid as a function of C for given a.' is

given by

LR(a;a') - - S2(Z) SD(a;a,)] R(al) (15)

where SD(a;a.') is the proiability of the aircraft surviving the duel

as a function of a for given a.l.

An adaption of tha functional equations for the PK duel will

serve to evaluate K(a;'). From equation (V-24), if n - land for

1 < I < 3,

fli(x, Si t a;a') * Pjj(kj, a) ST(kl, a) rK(Xl, kj, a) (16)

__g
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and from equation (V-26) if 2 < n < N and for all 1 < I < 3,

2
--- (X, an$ ;L;l) - S (kA, a) Su(k', a) pij(k'

i-I

Sfn- i,j(Xn, Snl, C;aL) + ST(kA, CL) Pi 3 (knl, a)

*rK(dn, kn, Oa) + Su(k'', a) (1 - rK(dn, kn, a))

nj(xn - d n, S 1, ;a')] (17)

Finally,

ID(a;a') f^Nl(xN, SN, a;M,) (18)

The survival probability SD(;Ot') can be evaluated by using equations

(10), (11), and (12). Equation (IV-34) relates sn. I to s n .

Numerical Example: Tactics Selection

Using the EH Duel Raid Model

The Implications of user uncertainty with respect to the EH

duel raid model will now be illustrated by using the example problem

chat was introduced in Chapter IV and further discussed in Chapter VII.

The nominal input values relating to acquisition, aircraft survival,

and weapon effectiveness are unchanged from the previous example, but

a range of uncertainty will now be associated with each of the input

quantities. The optimistic and pessimistic value of each parameter is

chosen so that the parameter values used in the example from Chapters

IV and VII correspond to m - 0.5.

I
~i

L --
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Figure 25 shows the acquisition probabilities and their range

of uncertainty. Figure 26 shows the survival probabilities and their

range of uncertainty. Figure 27 shows the salvo effectiveness func-

tions with the range of uncertainty Illustrated for mode of attack

number four. The optimistic and pessimistic limits for the salvo

effectiveness functions were zenerared by respectively increasing and

decreasing the value of the multiplier " by ten per cent of the

' , nominal value.

n The modes of attack might be visualized as representing dif-

ferent aircraft attack speeds. DMode one has a higher salvo effective-

ness and a lower survival probability which might result from lower

speed. Mode four has a lower salvo effectiveness and higher survival

probability which might result from higher speed of attack. It appears i
reasonable to assume that the acquisition probabilities do not depend I
on the attacit speed (13,14,24).

Evaluation of equations (5) and (6) for the values CLI' - 0.0,

ai' - 0.5 and C' = 1.0 produces the profiles of system performance that

are shown in Fisgure 28.

With these profiles before him, the operational planner might

first observe that of the three values of oi., the moderate philosophy

represented by a' - 0.5 shows lower expected losses, L(ct;c'), for all

values of a than does either of the other values of V'. Looking fur- .

thor, he notes that i' - 0.5 has higher expected hits, CR('a;(') , for

all values of i than does ai' - 1.0, so c' - 1.0 is clearly dominated

by a' - 0.5. On the other hand, a' - 0.0 gives higher los3es but it

also gives more hits so the choice between ai' - 0.0 and a' - 0.5 is j

I -

:1. . . .
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not so clear. Since the goal of the raid is to make ten hits, then

the cost of adopting c' - 0.0 may not be justified since that philoso-

phy gives ten or more expected hits for all values of a. It might be

appropriate to plot profiles for some other values of a' to further

illuminate the decision.

It is interesting in general and might be of particular interest

to the operational planner to examine the attack policies that are

represented by the three values of a'. Figures 29, 30, and 31 are

diagrams of the attack policies for a' w 0.5, a' w 0.0, and a' 1.O,

respectively. In this problem the operational planner would be

particularly Interested in comparing Figures 29 and 30. Note that for

' - 0.5 (Figure 29) the minimum number of passes is three, the maxi-

mum number of passes is four, and d9 - 3. For a' - 0.0 (Figure 30)

the maximum number of passes is four and d - 4. Thus, oi' - 0.0 leads

to a more conservative policy than does a' - 0.5 as would be expected.

when a' - 1.0, on the other hand, the minimum number of passes is five,

thus il - 1.0 is the least conservative policy as would be expected.

Also, CL' - 1.0 gives kn - 1 for all cases since this is the most effec-

tive mode and there is assumed to be no associated attrition penalty.

By reflecting on these results, we can perhaps get some idea of

why they occur. Taking c' - 0.5 as a base case, lowering a' to 0,0

results in higher d4 because of the decreased survival probabilities

at ai' - O.0. If the probability of survival Is less, any weapons not

delivered on a given pass are less likely to be delivered, thus the

tendency is to deliver the weapons earlier in the duel. Still taking

a' - 0.5 as a baso case, the values of d n are generally lower when
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a' - 1.0 as shown in Figure 31. This is because the survival proba-

bilities are all equal to 1.0 when al - 1.0 which means that weapons

not delivered on the current pass have just as much chance of being

delivered on a future pass. There is no discounting since (STSu ) -

1.0. In all states of Figure 31, the remaining weapons are allocated

so they are, as nearly as possible, evenly distributed among the re-

maining passes. Note in Figure 31 that kn a I for all n. This Is

because mode 1 gives the h'ghest salvo effectiveness and there Is no

attzition penalty.

Nflmerical Example: Tactics Selection

Using the PK Duel Raid Model

To illustrate the implications of user uncertainty with respect

to the FK duel raid model, we will use the example that was first in-

troduced in Chapter V and was further discussed in Chapter VII. The

acquisition probabilities are given in Figure 25, and the survival

probabilities are given in Figure 26. The salvo effectiveness func-

tions are similar to those given In Figure 27 except that the optimis-

tic and pessimistic limits for the multiplier W) are now 0.275 and

0,225, respectively. The values of Q are unchanged. The salvo effec-

tiveness function is interpreted here as the probability of kill

versus salvo size.

Evaluation of equations (14) and (15) for the values a' - 0.0,

cL' - 0.5, and CL' - 1.0 produces the profiles of system performance

that are shown in Figure 32. These curves are very similar to those

given in Figure 28 for the EH duel raid model and the same sort of

comments apply.

I
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Numerical Example: Revised Survival Probabilities

The system performance profiles in Figures 28 and 32 have the

feature that when CE - 1.0, LR((;aL') - 0. This is because all survival

probabilities were set equal to 1.0 at their optimistic limit. It is

interesting to see what happens when this is not the case. Suppose

that in the EH duel example, all the inputs are unchanged excert that

the optimistic limit for ST and Su is lowered from 1.0 to 0.9975.

This results in the modified probability of survival inputs that are

shown in Figure 33. The resulting system performance profiles are

shown in Figure 34.

Comparing Figuee 34 with Figure 28, the first observation is

that losses no longer go to zero when a - 1.0. This reflects the re-

duced optimistic values of ST and Su . The values taken at C - 0.0 In

Figures 34 and 28 are essentially the same but the values taken at

a - 1.0 have changed from 0.0 in such a way that the expected loss

curves now cross. Int Figure 28, the tactic for ca' - 1.0 is clearly

dominated by the tactic for ai' - 0.5, while in Figure 34, there is a

part of the range of a values where the expected losses are lower when

' m 1.0. Note, however, that for all values of a, the expected hits

are much lower for cL' - 1.0 than for c' - 0.5 in both figures. It is

not clear which of the three tactics a given decision maker might

choose and it is possible that he wold like to see results for more

values of a'. Nevertheless, the result! that have been presented have

shed some light on the implications of uAcertainty.

JI
i,
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Numerical Example: A Designer's Decision

The previous examples have dealt with the user's decision,

i.e., choice of the best tactic for a given system in a given situa-

tion. We can begin to consider the designer's decision by way of an

example. Suppose the system of the preceding example is taken as a

standard system which is to be modified to provide improved perfor-

mance in that particular situation. Suppose the following alternative

designs are available where A represents the standard system whIle B,

C, and D represent equally costly modifications.

A: standard system

B: provide a new sensor: set P(Ao) - P(A) - 1.0 [
and P(AoD) - P(AID) - the standard system values

for P(AID) (see Figure 25)

C: increased weapon load: xN - 12 (XN - 8 in the

standard system)

D: improved first pass survival probability:

set ST(kn) - Su(kn) - 1.0 on the first pass for

all kn.

When comparing alternatives, we should in principle examine all

combinations of alternative and value of a'. The result would be the

most desirable combination of alternative and tactic. Since rhe con-

siderations that are involved are largely subjective, it is difficult

to give general rules that would lead to the best decision in a particu-

lar situation. Accordingly, it seems reasonable for this example, and

perhaps as a starting point for many actual evaluations, to compare

alternatives with ' set at a nominal value, say a' - 0.5.
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Thus, each alternative is evaluated using its own best tactic for the

nominal value of input param'eters.

Figure 35 shows the profiles of system performance that result

for the various alternatives in this example when a' - 0.5. These

profiles display the effects of uncertainty and the decision maker's

options in controlling the outcome. We cannot say how a decision mak-r

would react when confronted by these results, but we can point out some

relevant considerations.

First, it is interesting to study the seemingly trivial question

of whether or not each alternative actually provides an improvement

over the standard system. First, observe that B, C, and D all show

lower expected losses than does A for all a. Next, note that C's

profile of expected hits is essentially the same as that of A so we

might conclude that C's performance is clearly better than A's. If

small variation of expected hits is a goal, then B's expected hits

profile shows less variation than that of A, therefore, B would be pro-

ferred Co A. On the other hand, D shows more variation of expected

hits than does A and it is conceivable that D would not be preferred

to A. This is a very interesting possibility since If uncertainty is

entirely suppressed and we compare alternatives on the basis that

a - a' - 0.5, D would clearly be preferred over A, B, and C. Thic

suggests that if variation of expected hits is of primary importance,

then the tactics optimization has been based on an irconsIstent cri-

terion. If so, then the problem must be refGrmulated.

Assuae that variation of expected hits is not so important as

to force a reformuiation of the problem, i.e., alternative D is

If
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preferred to alternative A. Even with this assumption, variation of

expected hits may be important enough to influence the choice among

alternatives B, C, and L. The choice in this example might in fact

be viewed as a tradeoff betweei. minimizing expected losses and mini-

mizing the variation of expected hits. To minimize expected losses,

alternative D would be selected; alternative B minimizes the varia-

tion of expected hits. in this particular case, alternative C might

represent a reasonable compromise.

The main point of the foregoing discussion is that if uncer-

tainty had been completely suppressed, alternative D would have been

chosen without hesitation. When uncertainty was considered, a new

realm of considerations was revealed. Alternative D may no longer be

selected. It may even be decided to reformulate the problem. This may

or may not be reason to want to quantitatively display the effects of

uncertainty, depending on one's point of view. It does, however,

Illustrate the importance of uncertainty and it shows how the effects

of uncertainty can be displayed.

Another interesting point can be made by qualitatively compar-

ing Figure 35 with Figure 34. Alternative A of Figure 35 corresponds

to a' w 0.5 in Figure 34. As a general observation from comparing

these figures, the choice of a' seems to be of comparable importance

with the choice of system design. Among the designs and values of cc'

that were considered, the variation in outcomes caused by changing

the design with fixed a' as in Figure 35 seems to be no greater than

the variation of outcomes that is caused by changing the value of a'

while keeping the same design as in Figure 34.

V -
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The importance of tactics can be further emphasized bV the

following extension of the example. Much current policy for air-to-

ground attack establishes a limit of one pass per sortie. This policT

would be justified If area defenses were negligible and first pass

attrition was small, i.e., the desired level of effectiveness could be

achieved by simply increasing the raid size and the losses would be

small if only one pass is made Per aircraft. Let us see what would

happen If a limit of cne pass per sortie (N-l) is imposed in the

present example where area attrition is not negligible and the enea.y

has sufficient warning so that first pass attrition is the same as the

attrition on later passes. The resultin profiles ,f system PeLZL-

mance are shown in Figure 36 for alternatives A, B, and C. For the

standard system, alternative A, the expected losses have roughly

doubled and the variation of expected hits has greatlv increased.

Suppose as a further extension of the example, system dfsign

alternatives B and C are to be compared under the restriction of one

pass per sortie. The curves for B and C in Figure 36 are applicable
#a

for this cxnparison. On this basis, B shows considerably lower losses

and less variation of expected hits than does C. In Figure 35 where

N - 5, the choice between B and C is not so clear.

I

En
I
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CHAPTER IX

SUMIARY REMARKS

What Has Been Accomplished?

According to the general problem statement given at the be-

ginning of Chapter Is we set out to "provide a systematic method for

making the best use of available information" relating to "a rational

selection of tactics for air-to-ground attack when faced by uncer-

tainty." The result was to be a "quantitative theoretical structure."

The effort to achieve these goals led first to the discussion

of basic recursive analysis techniques. Some general recursive rela-

tionships were developed In Chapter II.

It was then shown in subsequent chapters how these recursive

relationships can be appleu to solve progressively more complex

duels. Discussion of these duels started in Chapter III with the sim-

plest case where we sought the allocation of weapons among passes so

as to maximize the expected value of the number of hits. Probabills-

tic target acquisition and multiple modes of attack were added in

Chapter IV. In Chapter V the recursive zelationships were applied to

a duel where the objective was to maximize the probability of at least

one hit subject to suitable constraints. In Chapter VI we discussed

the more general case where an aspiration level of C hits was estab-

lished and finally the most general duel was solved in which the

183
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damage level or utility achieved is an arbitrary function of the

number of hits.

It WAS observed that in all of these duels, simply maximizing

the return is not sufficient. The cost must be considered. Accord-

inglv, the maximized return for a duel was expressed as a function of

the constraining probability of aircraft survival, For convenience,

we generally expressed this relationship in terms of attrition rate

rather than survival probability and the result was a "return-versus-

attrition function" that characterizes the duel. To decide which

point on the return-versus-attrition function is the best operating

point, multiple aircraft raid moduls were developed In Chapter VII for

both single and multiple target raids.

Finally, in Chapter VIII the effects of user uncertainty were

considered and a method was discussed for presenting to the decision

maker a display of highly digested information as to the effects of

uncertainty and his options to contiol the outcome.

It is a matter of qualitative judgment as to whether the prob-

lem objectives have been achieved, but it certainly seems that progress

has been made. A theoretical structure has been developed which pro-

vides a systematic way of using available Information. Uncertainty

has been treated and practical optimizing methods have been developed.

Throughout this discussion, the aim has been to develop methods

that can actually be used to analyze real problems. W'e have attempted

not to lose sight of practical application for the sake of mathematical

convenience. There are essentially no results that depend on a pecu-

j liarity of a functional form. For the most part, the methods used will

I
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accomodite artltrarv fuic-tonl torns, e.g., sa!ve efv'criveness can

take any value within the ilmits of its definitio',. The ietbod for

denlini with user uncertaintv Involves only elementary mathdmatlcs,

but it seems to be practical. It gives useful rezi"ts without making

burdensome demands tor input data, i.e., no knowledge uf probability

theory is required to bound tile values of input variables. Considvr-

able thought has been devoted to the selection of criteria. The

emphasis has been on linding adequate solution meLhods Lsed m real-

istic criteria. Thl- emphasis has led to the consideration of a

variety of duels, multiple aircraft raids, multpl-, targpt raids, and

to user uncorLaintY, whereas we might have dwelt on (irding increas-

Ingl , elegant solution methods for some problem such as maximizing the

expected value of the ntmlbLr of hits In a particular aircraft versus

target duel.

In discussing the motivation for t!is study, we identified a

"user's deeision problem" and a "designer's decision problem." The

results that have been obtained seem to show considerable promise for

stuJling users' decisions. These rcsults should also be useful In

studving the designer's decision but we are left with the dilemma

that is discuss-d in the following section.

A Perplextng Problem

A major unsolved problem relates to the effect of user uncer-

taint), on desint selection. For a given situation which involves user

uncertainty t'0, methods that have been presented in this report can be

employed. They serve to determine and portray to the decision maker



186

the effects of uncertainty and his options to control system per-

formance in that situation. Both tactics selection and design selec-

tion can be studied bV using these methods.

Unfortunately, in comparing system designs, we must generally

consider not just one situation, but an array of s~tuatlons. In

accordance with the introductory discussion, the application of de-

cision theory requires numerical values that represent the utility of

each design in each of the situations. The best we have been able to

do is to quantitatively display the effects of uncertaintv. This pro-

vides a basis for the decision maker to choose among alter-natives in

a given situation but it does not provide the desired utility measure.

How then Is the decision maker to make his choice when many

situations are involved? One course of action is to limit the number

of blocks in the decision matrix and present a complete analysis in-

cluding the effects of user uncertainty for each block. If the de-

cision matrix is sufficiertly small, perhaps the decisicn maker can

comprehend the meaning of such results and make a rational decision

accordingly. This approach may at leasc prevent him from making a

completely irrational decision.

An alternative is to entirely suppress the user's uncertainty

when making design comparisons (this is what Is usually done). The

techniques discussed in this report allow us to optimize tactics in

each block if user's uncertainty is ignored. This accomplishment is

well worthwhile. It reduces our vulnerability to the possibility that

tactics are at least as important as system design. Non optimal tac-

tics can be useless or even misleading as a basis for comparing desi&.s.I!
-vl



APPEND IX A

DEVELOPING RECURSIVE RELATIONSHIPS FROM

A NON RECURSIVE PROBLEM STATEMENT

In this appendix we will develop a non recursive statement of

the most general problem that is treated in Chapter IV, I.e., the EH

duel. The recursive relationships, equations IV-27 and IV-28, which

are the principal results of Chapter IV, will then be developed from

the non recursive statement of the problem by using a method similar

to that of Neuhauser (22). It will also be indicated how the approach

that is followed in this appendix can be applied to the most general

problem that is treated in Chapter V, i.e., the PK duel.

In the general EH duel, we seek to maximise the expected value

of the number of hits achieved in a duel that includes probabilistic

target acquisition and multiple modes of attack subject to constraints

on the number of passes, N, the nmber of weapons available, xN. and

the probability of the aircraft surviving the duel, sN .

The notation used in this appendix is the same as that used in
I

the main body of this work with the following modifications. Let Jn

denote the Markov state of the system at stage n - 1. Thus the vector

(iN' iN-I' --- , Jl) denotes one of the possible sequences of Markov

state transitions and the probability of that sequence occurring is

N

Tr pn 1 n (kn)tn,,n
187
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where pjnlJn(k ) is the probabilicy that the system will be in state

Jn at stage n-i given that the system is in state Jn*I st stage n.

This transition probability depends on kn, the mode of attack at

stage n.

Let PN denote a policy for a duel In which the number of passes

is not to exceed N. The policy is a set of instructinis that Indicates

the course of action for the pilot to follow at every stage for every

state that the system might be in, i.e., the policy tells the pilot

what mode of attack to use and the number of weapons he should seek to

deliver on the next pass as a function of the number of passes remain-

Ing, the current Markov state, the number of weapons remaining, and the

current constraining attrition. We will denote by PI that part of the

policy that specifies kNJ (XN, SO and dNj (xN. s4 ) at the first
N+l N+l

pass. Let PN- denote that part of the policy that specifies

k (x n , %n ) and d (x s) for all combinations of n,

Xn, and 3n such that I < n < N - 1, 1 C J -, x1 E S n SnE Sn.

(See Footnotes 1,2) Let Sp, denote the set of all possible policies
N

at pass N and let Sp denote the set of all possible policies for the
N-i

remaining N-I passes.

I#

1 Note that since some of the transition probabilities are zero

(see Figure 6), some of the above states may not be reachable, so it is
theoretically not nocessery for the policy to cover all of them. It
Is, however, quite complex to determine which of the above states can

be reached and which ones cannot and for our purposes, this considera-
tion will be ignored.

2 As in the main body of this work, the functions knj (xn, dn)
and d (x ,dn ) are abbreviated kn and d n when they

appear in the argument of other functions.

I!
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The payoff at stage n depends on whether or not weapons are

delivered so we will replace the salvo effectiveness function by

rn(d nO k n) .e., If Jn - 1 or 2, rji (dn,kn ) - 0 and if j, - 3,

rjn a rH(dnkn) where rH(dn,k n ) has the same meaning that it did in

SChapters III end TV.4

For a given sequence of Markov state transitions, JN, "--,Ji)'

and, for a given policy, the expected value of the number of hits is

given by the following expression (2). This expression is rationalized

by the same type of reasoning that led to equations (111-19) through

(111-22) in Chapter III.

ST(kN) rj (dN,kN) 4 ST(kN) Su(kN) ST(kN. I)

ST N ) +STN) k ST N-) r (

n-N-A+2 r n n N-1 (N19l N-1)j
N

+ -- - + S T(k N.2 ) Il ST (k n )  Su(k n  r (d N.P* 1 k N. 1 )n-N-.9 2 J N--# I

N

+ --- + ST (kl) rr ST(k n ) Su(kn) rj (dl,k1 ) (2)

n-2 1

The quantity A is a dummy index to be used later. Taking the expecta-

tion of the above expression over all sequences of Harkov state tran-

sitions and maximizing over all possible policies, the objective

function becomes expression (3) as shown on the following page.

|
lI

II
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( N

fNi(XN) Max El - - - (kn)
ESp over over nIj

N JN J1PN-.VE SPN_ I

ST(k N ) rJN(dNkN) ST(k N ) Su(kN) ST(kN l ) rjN-N(d NltkN-I)

N
+ + $T(k' +n) TI ST(kn) Su(kn) rjN (dN.) lkN-.f+l )

nu.N-)*2 -l

N
+- - - ST(kl) TT ST(kn) Su(k n ) rjl(dl,kl) (3)

n-2

where I - JNOI and XN = (XN,SN). The variable I has the same meaning

here with respect to stage N that it did in the main body of this work.

The variable I indicates the Markov state of the system at stage N.

This expression can be made more compact by using the index .

to give

fNi(XN) - Max - - - n p (kn)

PN C Spe over over [n-i n~l~ n

P N-16 S N-1 N J,(4)

N N

I N- ( dSN. ()

.i LT s(kN 1+ NT ST(kn) Su(kn) r ( N)+IN 1AT-N1 I n-N-.A 2 JN-. I d4+ l k1 2 l

where for an arbitrary function g(n) we define

N
n g(n) 1 (5)

n-N+Il
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The above maximization must be carried out subject to two con-

straints. First, the number of weapons available for n-1 passes, Xn-t

is the number of weapons available for n passes, xn, less the number _nI
that is delivered on pass n. Recalling that weapon delivery only

occurs at pass n when Jn " 3, we have the following relationship for

all 1 < n < N.

n- x1,2

(6)

nXn dn ; Jn" 3

We also require that the probability of the aircraft surviving the duel

be at least sN or symbolically

N
SST(k) S n)> s (7)

n=1e

Thus, in the most general problem of Chapter IV, we seek to per-

form the maximization indicated by equation (4) subject to the con-

straints indicated by equations (6) and (7).

Isolating the term corresponding to I - 1 in equation (4) gives

N
fNi(XN)- Max - - - n(kn)PN' G Spk over over n-i PJn1lJnJN J

P E SPN.l

ST(kN) rjN(dN,kN)

N N
Z Z ST(kNj,1 ) rf ST(kn) Su(kn) rjl(d k
-.2 n=N-J42

(8)

61- , -
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Considering the Markov state transitions, note that the first term of

[. ] In equation (3) depends only on JN and the second term depends

only on (JN.1,---,jl). Thus, we can write

fNi(XN) " M 'x { ovEr " PJN*iJN( k N ) [ ST(kN) r J.4(dNWk

PN Sp S orve r N~lN N)
N JN

PN-I E SP

N-i

... r Jn~lJnkn)

over over n-1 (9)

JN-i J,

N N-S,(k N .1l) Tr ST(kn) Su(kn) rkNN.. +l ) ]
.-2 n-N-j*2 J '-j+IdN

Ntw by factoring the quantity ST(kN) Su(kN) out of the second term in

equation (9) and by replacing the A by A .1, equation (9) becomes

fNi(XN) - Max PN* IJN(kN) [ST(kN) rj(dN,kN)
Ph E S p i over

N JN

PN-iC SN-

£ N-i N-I
4. ST(kN) Su(k N )  n - - - Z S ( N-1-1+1l

over over n-i n n

N-1 I

N S (k) S (k) r (d k (10)

n~~~Aaa T n u n N-1i1.1 (10)A~l
n-N- 1-A 2 rjN -eI ( N  - l'N- 1-.Ip, I (

Since ST(kN) SUOCN) 0 0, the outside quantity { } in equation (10)

is a monotonically nondecreasing function of inside quantity{ } ,

t
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thus, we have satisfied the monoronicity requirement of Neahauser (22).

Note also that the inside quantity { } iit equation (10) depends

only on the decision variables or PN-I" Thus, In accordance vith

Nemhaser's proof, equation (10) is equivalent to

SNi(XN - Max (k ST(kN) r JtI

N JN

S(k N ) Su(k N) Max oer n n PPN1ESNl over over not Pn+I n kn

PN-I1SPN-I JN-I J'

N-I N-I

ST(kN..i..A) IT ST(k) Su(k)r (dN
I n-N 1.+2r

By examining the constraints, equations (6) and (7), It is clear

that for given kNi aXN~dN d n dNJNil(XN,dN), the remaining decision

variables 'oust satisfy the constraints

fxN.. 1  XN J N *1,2

(12)

an -N -dN JN

N-1 aN

ST ( knT) S(k) N-1

so the second maximitation In equation (11) is subject to these con-

straints.
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By replacing N by N-I in equatimo (4), we recognise that the

quantity max that appears in equation (11) is the

PN-IE SP-

same as f Nl,jNl ) so equation (11) can be written as:

fNi~N. - Max { N ) [S.(k) rj(dNkNi(XN Zp PJN*IJNk N

I i1 Spf JNJ

+ ST(kN) Su(kN) N-1 (XN.)l (14)

where XN- (xN.lSN..1).

To see that equation (14) is the same as equation (IV-28) for

n-N, we use the fact that rl(dN,kN) - r2(dN,kN) - 0, while r3(dN,kN) -

rH(dN kN) Substituting these into equation (14) and using equations

(12) and (13) and noting the definitions of PN and Spe gives
tN

2

fNi(XN,SN) - A M PiJN (k N ) ST(kN) Su(I'N)fN.IJ XNPkN 6 Sk CsN~kJ-

dN E SdN(XN)

N (kn (k r (d kN )
ST(ks)Su(kN) 13 L ST N HN

+ S T(kN) Su(kN) fN. ,3(xN - N ST(kN)Su(LN) (15)

The trivial gmeralization of replacing N by n shows that equation (15)

holds for all 2 < n < N. Furthermore, if for all I < J< 3,

f (XE) 0 (16)

Oj

I 'I
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Then equation (15) becomes

fl(xiS l ) M (kl) S (kx ) rp(dl(,S (17)
klE Ski (S) 4

diE Sdl(xl)

which is the same as equation (IV-27).

Now consider how the approach that has been followsd in this

appendix can be applied to the most general problem that is treated in

Chapter V, i.e., the P. duel. The major change from the previous dis-

cussion In this appendix is that ve must replace expression (2) with

the following expression (18) which represents the probability of at

least one hit for a given sequence of Narkov state transitions,

O(N, "--,j1 ) and for a given policy. Note that for the PK duel, it

JN - 3, then r3(dnkn) - rK(dn,kn). This expression can be rationalized

by using the same type of reasoning that led to equations (5) through

(8) of Chapter V.

ST (kN) JN (dNOkN)+ST(kN)S (kN)ST (kN.l ) [1 - JNk(dN.k2) J

*ST(kN)Su(kN)ST(kNl)Su(kN.I/ST(kN-2 ) lrJ(dN,kN)]

* irJ T(N-ukN-I)] rJ.r (dN.2,kN-2)

+ ST(kN.J,+I) Tr ST(krk)Su(k n ) [I-r Jn(dn,kn)] r J N.JI (dN-.t I-kN-A+I)
n-N-.k+2

* N
+ ST(kl) IT ST(kn)Su(kn) -rj n (dn,kn) ] r, (d 1 ,k 1 )  (18)

n=2 (
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The details of the development will not be given but the argu-

ment Is Identical to that given for the EH duel. The changes that must

be made to apply the argument of this appendix to the PK duel follow ir

a straightforward manner from the use of expression (18) in place of

expression (2).

4
4

4
4.
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APPENDIX B

ISCME PROOFS RELATED TO TH[ MATERIAL

This appendix contains a proof of the comment that immedlately

follows the statement of the equivalence condition for the deterministic

decision process in Chapter 11, page 31. This appendix also contains

'K'

a proof of the comment that Imediately follows the statement of the

mortotonicity and equivalence conditions for the Markovian decision pro-

cess In Chapter 11, page 36.

First, relating to the deterministic decision process, we will

prove that "it follows from the definitions of nonotonicitv and

fn-l(Xn-1) that the function g [X,, Dn. fn_,ffxn..)1 represents the

maximume return that Is obtainable from the n Stage system for given X1n

* and Dn-"

Liet Fn denote a sequence of decisions, (Dnt--- DI), or "policy"

for stages n,---,l. Let Sp (Xn) denote the set of all feasible policies

for stages n,---,l where S X)depends on Xn. Let f(P)denote the

n stage return that Is realizable by using policy Fn and let Pn*(X,,)

be the optimnum n stage policy as a function of Xn. (to be abbreviated

* In* so that considering the definition of nx)

if

for all %-IE Sp 01:n 1 )

197
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Now, considering the definition of moncotonicity, it follows

that

gn[Xn, n,' fl(Pn 1 < gn4Xn, Dn' fn.l(Xn.1)] (2)

for all Pn-1 E s~n1 (Xn.1 ) and for every Xn E SXn and DnE SDnn)-

This completes the proof.

Next, relating to the Markovian decision process, we will prove

that given monotonicity and equivalence, "the function

gnij LXn' Dn' fn-lJ(Xn-
)3 represents the maximum expected value of

return that is obtainable frcm the n. stage system for given values of

XnO Dn, i, an J."

Let Pn denote a policy for stages n,---,l. Since the sequence

states that the system will occupy at stages n-l,---,1 is not known,

the policy must completely define thie value that the decision vector

is to take as a function of the state of the system at all stages,

i.e., P. must define (Dn(Xn), Dn.I(X1 i-),---, DI(X)) for all feasible

sequences CXn,---,Xl) where X is thse state vector which includes the

Markov state. Let SPn(X n ) denote the set of all feasible policies for

stages n,---,l where Spn(Xn) depends on Xn . Let fn (n. Xn) denote

the expected value af tho n stage return that is realitable if the

system is in state X& at stage n and policy Pn Is used. Let Pn*(Xn)

be the optimum n stage policy as a function of Xn (to be abbreviated

so consli-!rng the definition of fn-I(Xnl),

fn-l(P-- X-1) fn'-Pn-*, Xn-1) fn-1 (Xn-l)

for all Pn -I ES P, - . 1. ), Xn I 1ES X,.t.
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J

Now if J designates the Mlarkov state of the system at stage n-1,

the foregoing can be written

for all PnICsp (X. ), X,.1SX 1

It follows from the above and from the definition of monotonicity that

gnJ CX1t On- fn-l,J(pn-lXn-I ) ' S: 9lJ L41' On-' fn-I,J(Xn-' ) ]  (4)

for all I, J, g, Dn, P.., in their respective sets. From the fore-

going and the equivalence property, it follows that

gniJ [xC. Dn, fn..I,j(X .I)J Is the maximum expected value of the

n stage return for given XY On, , I J. This completes the proof.

T
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APPENDIX C

ANOTHER SOLUTION ME-rHOD FOR MARKOVIAN

DECISION PROCESSES

It may have occurred to the reader that the general EH duel,

equations (IV-27) and (IV-29) and the general PK duel, equations

(V-24) and (V-26) can also in principle be solved by Howard's value

Ite-ation method (17). It is interesting to see what is involved if

tnat method Is applied directly to the examples that have been dis-

cus..ed herein. Howard's notation will be used in this discussion.

To apply value iteration to a discounted Markovian decision

problem, the following recursive relation is used (17, p. 80).

Nvj(n + 1) - Max * 1: Pji vj(n)] (1)
k J-l

where
N

qkI - k r kI J-1 PtJ i

n - stage index

I - Markov state; I - I,---,N

k - i'.-Iex on decision alternatives

- discount factor; analogous to aircraft survival

probability
II

Pi I to J transition probability under decision k

r1  - reward associated with the I to j transition

under decision k.

200
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To solve the EH duel example of Chapter IV by use of equation

(1), the value of the Markov state variable I must completely charac- A

L terize the state of the system. In the example of interest, the

state of the system is characterized by

a. xn - The number of bombs remaining: 8 levels.

b. sn - The constraining survival probability: 12 levels.

C. The acquisition status: 2 levels.

Since these variable values can occur in all combinations, the number i

of levels required for the Markov state variable is N -8 x 12 x 2"

192. Thus, to solve the example problem by value iteration, each of

the transition and reward matrices has 192 x 192 , 36,864 elements

that must somehow be evaluated and accounted for In the calculations.

Solving the Chapter V example of the PK duel involves even

larger size matrices. The state of the system at any stage is charac-

terized by a)l of the previous factors in addition to which the status

of the target must be specified, i.e., it is either dead or alive.

This is required because the pilot does not know when target kill is

achieved and therefore the duel may continue after the target has been

killed but with a different reward per stage, The result is that for

the PK duel example, N - 8 x 12 x 2 x 2 - 384 levels are required for

the Markrv state variable. The transition and reward matrices each

have 384 x 384 - 147,456 elements to somehow account for,

Note that for this formulation the acquisition status can be

characterized by two levels, I.e., the target has either been acquired

or it has not been acquired. In the example of Chapter IV, the acqui-
sition status required three characterizing levels because of the
relationship between acquisition status and weapon delivery.

- [ -

_ a
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In solving the preceding examples by the methods presented

herein, the Markov state variable has t? .ee levels and the matrix of

transition probabilities has nine elements. The extent of the compu-

tation seems to be roughly comparable otherwise. In effect, our

method is equivalent to equation (1). The two methods perform the

same operations and arrive at the same result, but the former is con-

siderably more efficient and easier to apply to the problems that are

of Interest here.
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